cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-22 of 22 results.

A318395 Number of nonnegative integer matrices with values summing to n, up to transposition and permutation of rows and columns.

Original entry on oeis.org

1, 1, 3, 7, 21, 54, 167, 491, 1586, 5132, 17442, 60399, 216172, 790436, 2965333, 11365813, 44536775, 178107679, 726716229, 3022464373, 12807206008, 55253891494, 242585471236, 1083255591604, 4917631017573, 22685090928596, 106291554085987, 505653658171936, 2441383079595849
Offset: 0

Views

Author

Gus Wiseman, Aug 25 2018

Keywords

Comments

Also the number of non-isomorphic pairs of set partitions of {1,...,n}.

Examples

			Inequivalent representatives of the a(3) = 7 nonnegative integer matrices:
  [3]   [1 2]   [1 1 1]   [1 0]   [0 1]   [1 0 0]   [1 0 0]
                          [0 2]   [1 1]   [0 1 1]   [0 1 0]
                                                    [0 0 1]
Non-isomorphic representatives of the a(3) = 7 pairs of set partitions:
    {{1,2,3}}     {{1,2,3}}
    {{1,2,3}}    {{1},{2,3}}
    {{1,2,3}}   {{1},{2},{3}}
   {{1},{2,3}}   {{1},{2,3}}
   {{1},{2,3}}   {{2},{1,3}}
   {{1},{2,3}}  {{1},{2},{3}}
  {{1},{2},{3}} {{1},{2},{3}}
		

Crossrefs

Formula

a(n) = (A007716(n) + A316983(n))/2. - Andrew Howroyd, Sep 03 2018

Extensions

a(6)-a(25) from Andrew Howroyd, Sep 03 2018
Terms a(26) and beyond from Andrew Howroyd, Mar 29 2020

A122486 a(n) = Sum_{k=0..n} |Stirling1(n,k)|*Bell(k)^2.

Original entry on oeis.org

1, 1, 5, 39, 425, 6053, 107735, 2321469, 59152987, 1750362419, 59286010621, 2271617296347, 97502863649141, 4649359584613201, 244550369307356039, 14101227268075911837, 886551391533830227267, 60482082002935189216499
Offset: 0

Views

Author

Vladeta Jovovic, Sep 15 2006, Sep 19 2006

Keywords

Comments

Row sums of the absolute values of the triangle of Stirling1(n,k)*Bell(k)^2:
1;
0, 1;
0, -1, 4;
0, 2, -12, 25;
0, -6, 44, -150, 225;
0, 24, -200, 875, -2250, 2704;
0, -120, 1096, -5625, 19125, -40560, 41209;
0, 720, -7056, 40600, -165375, 473200, -865389, 769129;
... - R. J. Mathar, Jan 27 2017

Crossrefs

Programs

  • Maple
    with(combinat): seq(sum(abs(stirling1(n,k))*bell(k)^2,k=0..n),n=0..19); # Emeric Deutsch, Oct 08 2006

Formula

a(n) = exp(-2)*Sum_{r,s>=0} [r*s]^n/(r!*s!), where [m]^n = m*(m+1)*...*(m+n-1) is the rising factorial.
E.g.f.: Sum_{n>=0} exp( 1/(1-x)^n - 2 ) / n!. - Paul D. Hanna, Jul 25 2018

Extensions

More terms from Emeric Deutsch, Oct 08 2006
Previous Showing 21-22 of 22 results.