cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 118 results. Next

A146745 Coefficients of Pascal's triangle polynomial minus MacMahon polynomial A060187 with minus the first and last row terms and powers of x divided out: f(n)=3^n - 2*n - 1; q(x,n)=2^n*(1 - x)^(n + 1)* LerchPhi[x, -n, 1/2]; p(x,n)=((q[x, n] - (x + 1)^n)/x - f[n] - f[n]*x^(n - 2))/x.

Original entry on oeis.org

224, 1672, 1672, 10528, 23528, 10528, 60636, 259688, 259688, 60636, 331584, 2485232, 4674944, 2485232, 331584, 1756304, 21707888, 69413168, 69413168, 21707888, 1756304, 9116096, 178300784, 906923072, 1527092216, 906923072
Offset: 2

Views

Author

Roger L. Bagula, Nov 01 2008

Keywords

Comments

Row sums starting with n=4 are {224, 3344, 44584, 640648, 10308576, 185754720, 3715772120}. First elements in each row are {224, 1672, 1672, 10528, 60636, 331584, 1756304, 9116096}. Subtracting out the row terms gives the middle elements of the difference.

Examples

			Triangle starts
{224},
{1672, 1672},
{10528, 23528, 10528},
{60636, 259688, 259688, 60636},
{331584, 2485232, 4674944, 2485232, 331584},
{1756304, 21707888, 69413168, 69413168, 21707888, 1756304},
{9116096, 178300784, 906923072, 1527092216, 906923072, 178300784, 9116096}
		

Crossrefs

Programs

  • Mathematica
    q[x_, n_] = 2^n*(1 - x)^(n + 1)* LerchPhi[x, -n, 1/2]; p[x_, n_] = ((q[x, n] - (x + 1)^n)/x - f[n] - f[n]*x^(n - 2))/x; Table[CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x], {n, 4, 10}]; Flatten[%]

Formula

f(n) = 3^n - 2*n - 1;
q(x,n) = 2^n*(1 - x)^(n + 1)* LerchPhi[x, -n, 1/2];
p(x,n) = ((q[x, n] - (x + 1)^n)/x - f[n] - f[n]*x^(n - 2))/x;
t(n,m) = Coefficients(p(x,n)) with n starting at 4.

A154817 Triangle T(n,k) = A060187(n+2,k+2), 1<=k<=n.

Original entry on oeis.org

6, 23, 23, 76, 230, 76, 237, 1682, 1682, 237, 722, 10543, 23548, 10543, 722, 2179, 60657, 259723, 259723, 60657, 2179, 6552, 331612, 2485288, 4675014, 2485288, 331612, 6552, 19673, 1756340, 21707972, 69413294, 69413294, 21707972, 1756340
Offset: 1

Views

Author

Roger L. Bagula, Jan 15 2009

Keywords

Comments

The triangle of MacMahon numbers with the first column and diagonal removed.
Row sums are 6, 46, 382, .. = A000165(n+1)-2.

Examples

			6;
23, 23;
76, 230, 76;
237, 1682, 1682, 237;
722, 10543, 23548, 10543, 722;
2179, 60657, 259723, 259723, 60657, 2179;
6552, 331612, 2485288, 4675014, 2485288, 331612, 6552;
19673, 1756340, 21707972, 69413294, 69413294, 21707972, 1756340, 19673;
59038, 9116141, 178300904, 906923282, 1527092468, 906923282, 178300904, 9116141, 59038;
		

Crossrefs

Programs

  • Mathematica
    p[x_, n_] = 2^n*(1 - x)^(1 + n)*LerchPhi[x, -n, 1/2];
    t[n_, m_] := CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x][[m]];
    Table[ Select[ Table[ t[ n, i ], {i, 1, n}], # > 1 & ], {n, 0, 14} ];
    Select[ Flatten[ Table[ t[ n, i ], {n, 0, 13}, {i, 1, n} ] ], # > 1 & ]

A155558 Multi-bifurcating recursion of a factorial type based on the MacMahon numbers A060187 as a triangle sequence: t(n,k) = A060187(n,m) from polynomials; f(n, m) = If[m <= Floor[n/2], f(m, 1)*f(n - m, 1)*t(n + 1, m)].

Original entry on oeis.org

1, 1, 6, 138, 10488, 8280, 2485656, 1392696, 1794643632, 663449904, 448448112, 3910528474128, 904634615952, 375908525712, 25621782562486656, 3570752184568704, 852504801992064, 514242863174016, 504057328351799983488
Offset: 0

Views

Author

Roger L. Bagula, Jan 24 2009

Keywords

Comments

Row sums are: {1, 1, 6, 138, 18768, 3878352, 2906541648, 5191071615792, 30559282412221440, 552452422047369288192, 31282693282240728431406336,...}.
The Eulerian numbers factored as factorial like to middle Floor[n/2]: t(n,m)=f(n,m)/(f[m,1]*f[n-m,1]).
The idea is to factor the Eulerian numbers as if the coefficients were made up of equivalents to factorials.
The result is a multi-bifurcating recursion thast fits the Eulerian numbers.

Examples

			Half MacMahon numbers: Table[Table[f[n, m]/(f[m, 1]*f[n - m, 1]), {m, 0, Floor[n/2]}], {n, 0, 10}];
  {1},
  {1},
  {1, 6},
  {1, 23},
  {1, 76, 230},
  {1, 237, 1682},
  {1, 722, 10543, 23548},
  {1, 2179, 60657, 259723},
  {1, 6552, 331612, 2485288, 4675014},
  {1, 19673, 1756340, 21707972, 69413294},
  {1, 59038, 9116141, 178300904, 906923282, 1527092468}
Factorial type triangle is:
  {1},
  {1},
  {6},
  {138},
  {10488, 8280},
  {2485656, 1392696},
  {1794643632, 663449904, 448448112},
  {3910528474128, 904634615952, 375908525712},
  {25621782562486656, 3570752184568704, 852504801992064, 514242863174016},
  ...
		

Crossrefs

Programs

  • Mathematica
    Clear[t, n, m, f, x, p];
    p[x_, n_] = (-1)^(n + 1)*(x - 1)^(n + 1)*Sum[(2* m + 1)^n*x^m, {m, 0, Infinity}];
    t[n_, m_] := Table[CoefficientList[FullSimplify[ExpandAll[p[x, k]]], x], { k, 0, 10}][[n + 1, m + 1]];
    f[0, 1] = 1; f[1, 1] = 1; f[2, 1] = 6;
    f[n_, m_] := f[n, m] = If[m <= Floor[n/2], f[m, 1]*f[n - m, 1]*t[n, m]];
    a = Join[{{1}}, {{1}}, Table[Table[f[n, m], {m, 1, Floor[n/2]}], {n, 2, 10}]];
    Flatten[%]

Formula

t(n,k)=A060187[n,m] from polynomials; f(n, m) = If[m <= Floor[n/2], f(m, 1)*f(n - m, 1)*t(n + 1, m)];

A155871 Subtraction of polynomial coefficients of MacMahon A060187 from third derivative of Pascal's triangle A155863: p(x,n)=(If[n == 0, 1, x^n + 1 + x*D[( x + 1)^(n + 1), {x, 3}]] - 2^n*(1 - x)^(1 + n)*LerchPhi[x, -n, 1/2])/x.

Original entry on oeis.org

1, 1, -16, -110, -16, -117, -1322, -1322, -117, -512, -9703, -22288, -9703, -512, -1843, -58977, -256363, -256363, -58977, -1843, -6048, -328588, -2477728, -4664934, -2477728, -328588, -6048, -18953, -1751300, -21692852, -69388094
Offset: 3

Views

Author

Roger L. Bagula, Jan 29 2009

Keywords

Comments

Row sums are:
{2, -142, -2878, -42718, -634366, -10289662, -185702398, -3715637758,
-81748930558, -1961988796414, -51011749920766}

Examples

			{1, 1},
{-16, -110, -16},
{-117, -1322, -1322, -117},
{-512, -9703, -22288, -9703, -512},
{-1843, -58977, -256363, -256363, -58977, -1843},
{-6048, -328588, -2477728, -4664934, -2477728, -328588, -6048},
{-18953, -1751300, -21692852, -69388094, -69388094, -21692852, -1751300, -18953},
{-58048, -9108221, -178273184, -906867842, -1527023168, -906867842, -178273184, -9108221, -58048},
{-175815, -46690547, -1403033205, -10836712218, -28587853494, -28587853494, -10836712218, -1403033205, -46690547, -175815},
{-529712, -237214810, -10708833968, -121383574287, -477020204064, -743288082732, -477020204064, -121383574287, -10708833968, -237214810, -529712},
{-1592125, -1198358670, -79944129566, -1295922974075, -7310749751463, -16818058154484, -16818058154484, -7310749751463, -1295922974075, -79944129566, -1198358670, -1592125}
		

Crossrefs

Programs

  • Mathematica
    p[x_, n_] = (If[n == 0, 1, x^n + 1 + x*D[(x + 1)^(n + 1), {x, 3}]] - 2^n*(1 - x)^(1 + n)*LerchPhi[x, -n, 1/2])/x;
    Table[FullSimplify[ExpandAll[p[x, n]]], {n, 3, 13}];
    a = Table[CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x], {n, 3, 13}];
    Flatten[a]

Formula

p(x,n)=(If[n == 0, 1, x^n + 1 + x*D[( x + 1)^(n + 1), {x, 3}]]
- 2^n*(1 - x)^(1 + n)*LerchPhi[x, -n, 1/2])/x;
t(n,m)=coefficients(p(x,n))

A158781 Triangle: A060187 with interspersed zeros.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 6, 0, 1, 1, 0, 23, 0, 23, 0, 1, 1, 0, 76, 0, 230, 0, 76, 0, 1, 1, 0, 237, 0, 1682, 0, 1682, 0, 237, 0, 1, 1, 0, 722, 0, 10543, 0, 23548, 0, 10543, 0, 722, 0, 1, 1, 0, 2179, 0, 60657, 0, 259723, 0, 259723, 0, 60657, 0, 2179, 0, 1, 1, 0, 6552, 0, 331612, 0, 2485288
Offset: 0

Views

Author

Roger L. Bagula, Mar 26 2009

Keywords

Examples

			{1},
{1, 0, 1},
{1, 0, 6, 0, 1},
{1, 0, 23, 0, 23, 0, 1},
{1, 0, 76, 0, 230, 0, 76, 0, 1},
{1, 0, 237, 0, 1682, 0, 1682, 0, 237, 0, 1},
{1, 0, 722, 0, 10543, 0, 23548, 0, 10543, 0, 722, 0, 1},
...
		

Crossrefs

Cf. A060187.

A171273 Matrix inverse of A060187.

Original entry on oeis.org

1, 1, 1, 5, 6, 1, 93, 115, 23, 1, 5993, 7436, 1518, 76, 1, 1272089, 1578757, 322762, 16330, 237, 1, 857402029, 1064110290, 217560951, 11012540, 160571, 722, 1, 1792650585525, 2224835452407, 454875884137, 23025275075, 335768223, 1512581, 2179, 1
Offset: 1

Views

Author

Roger L. Bagula and Mats Granvik, Dec 06 2009

Keywords

Examples

			{1},
{1, 1},
{5, 6, 1},
{93, 115, 23, 1},
{5993, 7436, 1518, 76, 1},
{1272089, 1578757, 322762, 16330, 237, 1},
{857402029, 1064110290, 217560951, 11012540, 160571, 722, 1},
{1792650585525, 2224835452407, 454875884137, 23025275075, 335768223, 1512581, 2179, 1},
{11464255554367057, 14228139328931096, 2908996087466828, 147249943814184, 2147290464886, 9673492136, 13945196, 6552, 1},
{222406320165016449457, 276025608122908733321, 56434463826320585284, 2856645864675796564, 41657391444153086, 187665608020478, 270538484020, 127141156, 19673, 1},
{13026233415367869864109781, 16166689855580307839632286, 3305339964838291288943901, 167312402773377971746920, 2439853795947184617546, 10991486289326969076, 15845312257310658, 7446608913000, 1152338433, 59038, 1}
		

Crossrefs

Programs

  • Mathematica
    m = 2;
    A[n_, 1] := 1
    A[n_, n_] := 1
    A[n_, k_] := (m*n - m*k + 1)A[n - 1, k - 1] + (m*k - (m - 1))A[n - 1, k]
    a = Table[A[n, k], {n, 12}, {k, n}]
    M[n_] := Table[If[k <= m, (-1)^(m + k)*a[[m, k]], 0], {k, 1, n}, {m, 1, n}]
    Table[Table[Inverse[M[12]][[m, n]], {m, 1, n}], {n, 1, 11}]
    Flatten[%]

Formula

A(n,k) = (m*n - m*k + 1) * A(n - 1, k - 1) + (m*k - (m - 1)) * A(n - 1, k), A(n,1) = A(n,n) = 1.

A176467 A symmetrical triangle:q=2;c(n,q)=Product[1 - q^i, {i, 1, n}];t(n,m,q)=A060187(n,m)-c(n,q)/(c(m,q)*c(n-m,q))+1.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 17, 17, 1, 1, 62, 196, 62, 1, 1, 207, 1528, 1528, 207, 1, 1, 660, 9893, 22154, 9893, 660, 1, 1, 2053, 57991, 247913, 247913, 57991, 2053, 1, 1, 6298, 320818, 2388134, 4474228, 2388134, 320818, 6298, 1, 1, 19163, 1712906, 20919938
Offset: 0

Views

Author

Roger L. Bagula, Apr 18 2010

Keywords

Comments

Row sums are:
{1, 2, 6, 36, 322, 3472, 43262, 615916, 9904730, 177511112, 3486135606,...}.

Examples

			{1},
{1, 1},
{1, 4, 1},
{1, 17, 17, 1},
{1, 62, 196, 62, 1},
{1, 207, 1528, 1528, 207, 1},
{1, 660, 9893, 22154, 9893, 660, 1},
{1, 2053, 57991, 247913, 247913, 57991, 2053, 1},
{1, 6298, 320818, 2388134, 4474228, 2388134, 320818, 6298, 1},
{1, 19163, 1712906, 20919938, 66103548, 66103548, 20919938, 1712906, 19163, 1},
{1, 58016, 8941891, 171953190, 853179296, 1417870818, 853179296, 171953190, 8941891, 58016, 1}
		

Crossrefs

Programs

  • Mathematica
    (*A060187*);
    p[x_, n_] = (1 - x)^(n + 1)*Sum[(2*k + 1)^n*x^k, {k, 0, Infinity}];
    f[n_, m_] := CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x][[m + 1]];
    c[n_, q_] = Product[1 - q^i, {i, 1, n}];
    t[n_, m_, q_] := f[n, m] - c[n, q]/(c[m, q]*c[n - m, q]) + 1;
    Table[Flatten[Table[Table[t[n, m, q], {m, 0, n}], {n, 0, 10}]], {q, 2, 12}]

Formula

q=2;
c(n,q)=Product[1 - q^i, {i, 1, n}];
t(n,m,q)=A060187(n,m)-c(n,q)/(c(m,q)*c(n-m,q))+1

A176468 A symmetrical triangle:q=3;c(n,q)=Product[1 - q^i, {i, 1, n}];t(n,m,q)=A060187(n,m)-c(n,q)/(c(m,q)*c(n-m,q))+1.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 11, 11, 1, 1, 37, 101, 37, 1, 1, 117, 473, 473, 117, 1, 1, 359, -467, -10331, -467, 359, 1, 1, 1087, -38805, -666047, -666047, -38805, 1087, 1, 1, 3273, -564647, -22609991, -71238207, -22609991, -564647, 3273, 1, 1, 9833, -6313279
Offset: 0

Views

Author

Roger L. Bagula, Apr 18 2010

Keywords

Comments

Row sums are:
{1, 2, 5, 24, 177, 1182, -10545, -1407528, -117580935, -13535434518,
-2541110736213,...}.

Examples

			{1},
{1, 1},
{1, 3, 1},
{1, 11, 11, 1},
{1, 37, 101, 37, 1},
{1, 117, 473, 473, 117, 1},
{1, 359, -467, -10331, -467, 359, 1},
{1, 1087, -38805, -666047, -666047, -38805, 1087, 1},
{1, 3273, -564647, -22609991, -71238207, -22609991, -564647, 3273, 1},
{1, 9833, -6313279, -656760847, -6104652967, -6104652967, -656760847, -6313279, 9833, 1},
{1, 29515, -63520279, -18148426855, -499870912759, -1504945075459, -499870912759, -18148426855, -63520279, 29515, 1}
		

Crossrefs

Programs

  • Mathematica
    (*A060187*);
    p[x_, n_] = (1 - x)^(n + 1)*Sum[(2*k + 1)^n*x^k, {k, 0, Infinity}];
    f[n_, m_] := CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x][[m + 1]];
    c[n_, q_] = Product[1 - q^i, {i, 1, n}];
    t[n_, m_, q_] := f[n, m] - c[n, q]/(c[m, q]*c[n - m, q]) + 1;
    Table[Flatten[Table[Table[t[n, m, q], {m, 0, n}], {n, 0, 10}]], {q, 2, 12}]

Formula

q=3;
c(n,q)=Product[1 - q^i, {i, 1, n}];
t(n,m,q)=A060187(n,m)-c(n,q)/(c(m,q)*c(n-m,q))+1

A176469 A symmetrical triangle:q=4;c(n,q)=Product[1 - q^i, {i, 1, n}];t(n,m,q)=A060187(n,m)-c(n,q)/(c(m,q)*c(n-m,q))+1.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, -8, -126, -8, 1, 1, -103, -4114, -4114, -103, 1, 1, -642, -82549, -353256, -82549, -642, 1, 1, -3281, -1430195, -23948889, -23948889, -1430195, -3281, 1, 1, -15292, -23527496, -1548356796, -6216938526
Offset: 0

Views

Author

Roger L. Bagula, Apr 18 2010

Keywords

Comments

Row sums are:
{1, 2, 4, 8, -140, -8432, -519636, -50764728, -9360737692, -3387701237632,
-246332974040099,...}.

Examples

			{1},
{1, 1},
{1, 2, 1},
{1, 3, 3, 1},
{1, -8, -126, -8, 1},
{1, -103, -4114, -4114, -103, 1},
{1, -642, -82549, -353256, -82549, -642, 1},
{ 1, -3281, -1430195, -23948889, -23948889, -1430195, -3281, 1},
{1, -15292, -23527496, -1548356796, -6216938526, -1548356796, -23527496, -15292, 1},
{1, -67707, -380011248, -99256044576, -1594214495286, -1594214495286, -99256044576, -380011248, -67707, 1},
{1, -290486, -6099252663, -6353979629820, -408235051426002, -1634139479203056, -408235051426002, -6353979629820, -6099252663, -290486, 1}
		

Crossrefs

Programs

  • Mathematica
    (*A060187*);
    p[x_, n_] = (1 - x)^(n + 1)*Sum[(2*k + 1)^n*x^k, {k, 0, Infinity}];
    f[n_, m_] := CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x][[m + 1]];
    c[n_, q_] = Product[1 - q^i, {i, 1, n}];
    t[n_, m_, q_] := f[n, m] - c[n, q]/(c[m, q]*c[n - m, q]) + 1;
    Table[Flatten[Table[Table[t[n, m, q], {m, 0, n}], {n, 0, 10}]], {q, 2, 12}]

Formula

q=4;
c(n,q)=Product[1 - q^i, {i, 1, n}];
t(n,m,q)=A060187(n,m)-c(n,q)/(c(m,q)*c(n-m,q))+1

A177826 Sub-triangle of A060187: even-indexed entries of even-indexed rows.

Original entry on oeis.org

1, 1, 1, 1, 230, 1, 1, 10543, 10543, 1, 1, 331612, 4675014, 331612, 1, 1, 9116141, 906923282, 906923282, 9116141, 1, 1, 237231970, 121383780207, 743288515164, 121383780207, 237231970, 1, 1, 6031771195, 13342139253321, 342917527152507, 342917527152507, 13342139253321, 6031771195, 1
Offset: 0

Views

Author

Roger L. Bagula, Dec 13 2010

Keywords

Examples

			Triangle begins:
  {1},
  {1, 1},
  {1, 230, 1},
  {1, 10543, 10543, 1},
  {1, 331612, 4675014, 331612, 1},
  {1, 9116141, 906923282, 906923282, 9116141, 1},
		

Crossrefs

Programs

  • Mathematica
    p[x_, n_] = (1 - x)^(n + 1)*Sum[((2*k + 1)^n)*x^k, {k, 0, Infinity}];
    t[n_, m_] := CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x][[m + 1]];
    Table[Table[t[n, 2*m], {m, 0, Floor[n/2]}], {n, 0, 20, 2}];
    Flatten[%]
    (* Alternative recursion for A060187 *)
    m = 2;
    A[n_, 1] := 1
    A[n_, n_] := 1
    A[n_, k_] := A[n, k] = (m*n - m*k + 1)A[n - 1, k - 1] + (m*k - (m - 1))A[n - 1, k]
    Table[A[n,k],{n,1,10,2},{k,1,n,2}]
    (* Alternative expansion for A060187 *)
    p[t_] = Exp[t] *x/(-Exp[2*t] + x)
    Table[ CoefficientList[FullSimplify[ExpandAll[(n!*(-1 + x)^(n + \
    1)/x)*SeriesCoefficient[ Series[p[t], {t, 0, 30}], n]]], x], {n, 0, 10}]
Previous Showing 21-30 of 118 results. Next