cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 22 results. Next

A350452 Number T(n,k) of endofunctions on [n] with exactly k connected components and no fixed points; triangle T(n,k), n>=0, 0<=k<=floor(n/2), read by rows.

Original entry on oeis.org

1, 0, 0, 1, 0, 8, 0, 78, 3, 0, 944, 80, 0, 13800, 1810, 15, 0, 237432, 41664, 840, 0, 4708144, 1022252, 34300, 105, 0, 105822432, 27098784, 1286432, 10080, 0, 2660215680, 778128336, 47790540, 648900, 945, 0, 73983185000, 24165049920, 1815578160, 36048320, 138600
Offset: 0

Views

Author

Alois P. Heinz, Dec 31 2021

Keywords

Comments

For k >= 2 and p prime, T(p,k) == 0 (mod 4*p*(p-1)). - Mélika Tebni, Jan 20 2023

Examples

			Triangle T(n,k) begins:
  1;
  0;
  0,          1;
  0,          8;
  0,         78,         3;
  0,        944,        80;
  0,      13800,      1810,       15;
  0,     237432,     41664,      840;
  0,    4708144,   1022252,    34300,    105;
  0,  105822432,  27098784,  1286432,  10080;
  0, 2660215680, 778128336, 47790540, 648900, 945;
  ...
		

Crossrefs

Columns k=0-1 give: A000007, A000435.
Row sums give A065440.
T(2n,n) gives A001147.

Programs

  • Maple
    c:= proc(n) option remember; add(n!*n^(n-k-1)/(n-k)!, k=2..n) end:
    b:= proc(n) option remember; expand(`if`(n=0, 1, add(
          b(n-i)*binomial(n-1, i-1)*x*c(i), i=1..n)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..n/2))(b(n)):
    seq(T(n), n=0..12);
  • Mathematica
    c[n_] := c[n] = Sum[n!*n^(n - k - 1)/(n - k)!, {k, 2, n}];
    b[n_] := b[n] = Expand[If[n == 0, 1, Sum[
         b[n - i]*Binomial[n - 1, i - 1]*x*c[i], {i, 1, n}]]];
    T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, n/2}]][b[n]];
    Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Mar 18 2022, after Alois P. Heinz *)
  • PARI
    \\ here AS1(n,k) gives associated Stirling numbers of 1st kind.
    AS1(n,k)={(-1)^(n+k)*sum(i=0, k, (-1)^i * binomial(n, i) * stirling(n-i, k-i, 1) )}
    T(n,k) = {if(n==0, k==0, sum(j=k, n, n^(n-j)*binomial(n-1, j-1)*AS1(j,k)))} \\ Andrew Howroyd, Jan 20 2023

Formula

From Mélika Tebni, Jan 20 2023: (Start)
E.g.f. column k: (LambertW(-x) - log(1 + LambertW(-x)))^k / k!.
-Sum_{k=1..n/2} (-1)^k*T(n,k) = A071720(n+1), for n > 0.
-Sum_{k=1..n/2} (-1)^k*T(n,k) / (n-1) = A007830(n-2), for n > 1.
T(n,k) = Sum_{j=k..n} n^(n-j)*binomial(n-1, j-1)*A106828(j, k) for n > 0. (End)

A273434 Number of endofunctions on [n] with exactly three cycles.

Original entry on oeis.org

1, 18, 305, 5595, 113974, 2581964, 64727522, 1783995060, 53705023251, 1755078270264, 61920105083187, 2346728722199680, 95117694573257784, 4106779625155078528, 188206877039146217476, 9125798298446360109312, 466820173490890114763781, 25126459591455539907002880
Offset: 3

Views

Author

Alois P. Heinz, May 22 2016

Keywords

Crossrefs

Column k=3 of A060281.

Programs

  • Mathematica
    Drop[CoefficientList[Series[-1/6 * Log[1+LambertW[-x]]^3, {x, 0, 20}], x] * Range[0, 20]!, 3] (* Vaclav Kotesovec, Nov 01 2016 *)
  • PARI
    x='x+O('x^30); Vec(serlaplace(-log(1+lambertw(-x))^3/6)) \\ G. C. Greubel, Aug 30 2018

Formula

E.g.f.: -1/6 * log(1+LambertW(-x))^3.
a(n) ~ n^(n-1/2) * sqrt(2*Pi) * (log(n))^2 / 16 * (1 + 2*(gamma - log(2))/log(n) + (gamma^2 - 2*log(2)*gamma + log(2)^2 - Pi^2/6)/log(n)^2), where gamma is the Euler-Mascheroni constant (A001620). - Vaclav Kotesovec, Nov 01 2016

A273435 Number of endofunctions on [n] with exactly four cycles.

Original entry on oeis.org

1, 30, 745, 18515, 484729, 13591116, 409987640, 13303809750, 463397746636, 17276343754098, 687247936771032, 29079485483123985, 1304889365985201424, 61922948839969015928, 3099416199490785094272, 163229892984351540698188, 9024648860521246301700096
Offset: 4

Views

Author

Alois P. Heinz, May 22 2016

Keywords

Crossrefs

Column k=4 of A060281.

Formula

E.g.f.: 1/24 * log(1+LambertW(-x))^4.

A273436 Number of endofunctions on [n] with exactly five cycles.

Original entry on oeis.org

1, 45, 1540, 49840, 1632099, 55545735, 1987186025, 75078221130, 2999597292406, 126693681294180, 5650573288138415, 265702055516788800, 13149171975158028874, 683615652343279677360, 37269087381803600233878, 2126880663709734887508320, 126841125623724152774643951
Offset: 5

Views

Author

Alois P. Heinz, May 22 2016

Keywords

Crossrefs

Column k=5 of A060281.

Formula

E.g.f.: -1/5! * log(1+LambertW(-x))^5.

A273437 Number of endofunctions on [n] with exactly six cycles.

Original entry on oeis.org

1, 63, 2842, 116172, 4654713, 189142107, 7923937307, 345104368752, 15688849238062, 745831503236820, 37094603885430728, 1929672890969261256, 104918114960824458448, 5956513043619244790970, 352719666690509340493680, 21759830035878816514854144
Offset: 6

Views

Author

Alois P. Heinz, May 22 2016

Keywords

Crossrefs

Column k=6 of A060281.

Formula

E.g.f.: 1/6! * log(1+LambertW(-x))^6.

A273438 Number of endofunctions on [n] with exactly seven cycles.

Original entry on oeis.org

1, 84, 4830, 243390, 11717013, 560544138, 27196758875, 1353285904971, 69495472079033, 3696068344472504, 203958595104203576, 11687491140975605592, 695597351310503327386, 42988755956609918306640, 2757417607812192585058358, 183451189952939198906121968
Offset: 7

Views

Author

Alois P. Heinz, May 22 2016

Keywords

Crossrefs

Column k=7 of A060281.

Formula

E.g.f.: -1/7! * log(1+LambertW(-x))^7.

A273439 Number of endofunctions on [n] with exactly eight cycles.

Original entry on oeis.org

1, 108, 7710, 469590, 26750823, 1488656598, 82839614429, 4672159568505, 269240651261153, 15931093968844912, 970803214965494976, 61032579212845013280, 3962346372673358180536, 265758042459395190801852, 18415788640437877637900864, 1318210727391112435230475378
Offset: 8

Views

Author

Alois P. Heinz, May 22 2016

Keywords

Crossrefs

Column k=8 of A060281.

Formula

E.g.f.: 1/8! * log(1+LambertW(-x))^8.

A273440 Number of endofunctions on [n] with exactly nine cycles.

Original entry on oeis.org

1, 135, 11715, 848430, 56457258, 3616660047, 228859354295, 14526558274800, 933767559522083, 61157779792168059, 4097522595384976251, 281552808746124677190, 19873435970688901729621, 1442409484607029199323392, 107706418622406296313956423
Offset: 9

Views

Author

Alois P. Heinz, May 22 2016

Keywords

Crossrefs

Column k=9 of A060281.

Formula

E.g.f.: -1/9! * log(1+LambertW(-x))^9.

A273441 Number of endofunctions on [n] with exactly ten cycles.

Original entry on oeis.org

1, 165, 17105, 1452880, 111684573, 8161132980, 582816362700, 41367826311240, 2950036744905393, 212871288926657075, 15617503320899550135, 1168755168529889495100, 89415279382066253241846, 7003566076056061232032785, 562166804049332506124053492
Offset: 10

Views

Author

Alois P. Heinz, May 22 2016

Keywords

Crossrefs

Column k=10 of A060281.

Formula

E.g.f.: 1/10! * log(1+LambertW(-x))^10.

A273442 Number of endofunctions on [2n] with exactly n cycles.

Original entry on oeis.org

1, 3, 95, 5595, 484729, 55545735, 7923937307, 1353285904971, 269240651261153, 61157779792168059, 15617503320899550135, 4429016799173481942427, 1381112305978592892946825, 469689278931628969590283855, 173002815169302537782725771395
Offset: 0

Views

Author

Alois P. Heinz, May 22 2016

Keywords

Crossrefs

Cf. A060281.

Programs

  • Mathematica
    Table[(2*n)!/n! * SeriesCoefficient[(-Log[1+LambertW[-x]])^n, {x, 0, 2*n}], {n, 0, 20}] (* Vaclav Kotesovec, Nov 01 2016 *)
    Flatten[{1, Table[Sum[Binomial[2*n-1, k] * (2*n)^(2*n-1-k) * Abs[StirlingS1[k+1, n]], {k, 0, 2*n-1}], {n, 1, 20}]}] (* Vaclav Kotesovec, Nov 01 2016 *)

Formula

a(n) = (2*n)!/n! * [x^(2*n)] (-log(1+LambertW(-x)))^n.
a(n) = A060281(2n,n).
a(n) ~ c * d^n * n^(n-1/2), where d = 2^(4-r) * exp(1-r) * (2-r)^(r-2) * log(s) / (1-1/s)^r = 10.40858458700790823344027277763248832..., where r = 1.2672171362228848078038115564503589940694831794020694762759870935... is the root of the equation r*log(s) * (-1 + (r-s)* log((2*(s-1))/(s*(2-r)))) = 1 - s, where s = -r*LambertW(-1, -exp(-1/r)/r) = 1.5782614856055967129193228312616913... and c = 0.336740238865974324583136447665761... - Vaclav Kotesovec, Nov 01 2016, extended Aug 28 2017
Previous Showing 11-20 of 22 results. Next