A350452
Number T(n,k) of endofunctions on [n] with exactly k connected components and no fixed points; triangle T(n,k), n>=0, 0<=k<=floor(n/2), read by rows.
Original entry on oeis.org
1, 0, 0, 1, 0, 8, 0, 78, 3, 0, 944, 80, 0, 13800, 1810, 15, 0, 237432, 41664, 840, 0, 4708144, 1022252, 34300, 105, 0, 105822432, 27098784, 1286432, 10080, 0, 2660215680, 778128336, 47790540, 648900, 945, 0, 73983185000, 24165049920, 1815578160, 36048320, 138600
Offset: 0
Triangle T(n,k) begins:
1;
0;
0, 1;
0, 8;
0, 78, 3;
0, 944, 80;
0, 13800, 1810, 15;
0, 237432, 41664, 840;
0, 4708144, 1022252, 34300, 105;
0, 105822432, 27098784, 1286432, 10080;
0, 2660215680, 778128336, 47790540, 648900, 945;
...
-
c:= proc(n) option remember; add(n!*n^(n-k-1)/(n-k)!, k=2..n) end:
b:= proc(n) option remember; expand(`if`(n=0, 1, add(
b(n-i)*binomial(n-1, i-1)*x*c(i), i=1..n)))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..n/2))(b(n)):
seq(T(n), n=0..12);
-
c[n_] := c[n] = Sum[n!*n^(n - k - 1)/(n - k)!, {k, 2, n}];
b[n_] := b[n] = Expand[If[n == 0, 1, Sum[
b[n - i]*Binomial[n - 1, i - 1]*x*c[i], {i, 1, n}]]];
T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, n/2}]][b[n]];
Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Mar 18 2022, after Alois P. Heinz *)
-
\\ here AS1(n,k) gives associated Stirling numbers of 1st kind.
AS1(n,k)={(-1)^(n+k)*sum(i=0, k, (-1)^i * binomial(n, i) * stirling(n-i, k-i, 1) )}
T(n,k) = {if(n==0, k==0, sum(j=k, n, n^(n-j)*binomial(n-1, j-1)*AS1(j,k)))} \\ Andrew Howroyd, Jan 20 2023
A273434
Number of endofunctions on [n] with exactly three cycles.
Original entry on oeis.org
1, 18, 305, 5595, 113974, 2581964, 64727522, 1783995060, 53705023251, 1755078270264, 61920105083187, 2346728722199680, 95117694573257784, 4106779625155078528, 188206877039146217476, 9125798298446360109312, 466820173490890114763781, 25126459591455539907002880
Offset: 3
-
Drop[CoefficientList[Series[-1/6 * Log[1+LambertW[-x]]^3, {x, 0, 20}], x] * Range[0, 20]!, 3] (* Vaclav Kotesovec, Nov 01 2016 *)
-
x='x+O('x^30); Vec(serlaplace(-log(1+lambertw(-x))^3/6)) \\ G. C. Greubel, Aug 30 2018
A273435
Number of endofunctions on [n] with exactly four cycles.
Original entry on oeis.org
1, 30, 745, 18515, 484729, 13591116, 409987640, 13303809750, 463397746636, 17276343754098, 687247936771032, 29079485483123985, 1304889365985201424, 61922948839969015928, 3099416199490785094272, 163229892984351540698188, 9024648860521246301700096
Offset: 4
A273436
Number of endofunctions on [n] with exactly five cycles.
Original entry on oeis.org
1, 45, 1540, 49840, 1632099, 55545735, 1987186025, 75078221130, 2999597292406, 126693681294180, 5650573288138415, 265702055516788800, 13149171975158028874, 683615652343279677360, 37269087381803600233878, 2126880663709734887508320, 126841125623724152774643951
Offset: 5
A273437
Number of endofunctions on [n] with exactly six cycles.
Original entry on oeis.org
1, 63, 2842, 116172, 4654713, 189142107, 7923937307, 345104368752, 15688849238062, 745831503236820, 37094603885430728, 1929672890969261256, 104918114960824458448, 5956513043619244790970, 352719666690509340493680, 21759830035878816514854144
Offset: 6
A273438
Number of endofunctions on [n] with exactly seven cycles.
Original entry on oeis.org
1, 84, 4830, 243390, 11717013, 560544138, 27196758875, 1353285904971, 69495472079033, 3696068344472504, 203958595104203576, 11687491140975605592, 695597351310503327386, 42988755956609918306640, 2757417607812192585058358, 183451189952939198906121968
Offset: 7
A273439
Number of endofunctions on [n] with exactly eight cycles.
Original entry on oeis.org
1, 108, 7710, 469590, 26750823, 1488656598, 82839614429, 4672159568505, 269240651261153, 15931093968844912, 970803214965494976, 61032579212845013280, 3962346372673358180536, 265758042459395190801852, 18415788640437877637900864, 1318210727391112435230475378
Offset: 8
A273440
Number of endofunctions on [n] with exactly nine cycles.
Original entry on oeis.org
1, 135, 11715, 848430, 56457258, 3616660047, 228859354295, 14526558274800, 933767559522083, 61157779792168059, 4097522595384976251, 281552808746124677190, 19873435970688901729621, 1442409484607029199323392, 107706418622406296313956423
Offset: 9
A273441
Number of endofunctions on [n] with exactly ten cycles.
Original entry on oeis.org
1, 165, 17105, 1452880, 111684573, 8161132980, 582816362700, 41367826311240, 2950036744905393, 212871288926657075, 15617503320899550135, 1168755168529889495100, 89415279382066253241846, 7003566076056061232032785, 562166804049332506124053492
Offset: 10
A273442
Number of endofunctions on [2n] with exactly n cycles.
Original entry on oeis.org
1, 3, 95, 5595, 484729, 55545735, 7923937307, 1353285904971, 269240651261153, 61157779792168059, 15617503320899550135, 4429016799173481942427, 1381112305978592892946825, 469689278931628969590283855, 173002815169302537782725771395
Offset: 0
-
Table[(2*n)!/n! * SeriesCoefficient[(-Log[1+LambertW[-x]])^n, {x, 0, 2*n}], {n, 0, 20}] (* Vaclav Kotesovec, Nov 01 2016 *)
Flatten[{1, Table[Sum[Binomial[2*n-1, k] * (2*n)^(2*n-1-k) * Abs[StirlingS1[k+1, n]], {k, 0, 2*n-1}], {n, 1, 20}]}] (* Vaclav Kotesovec, Nov 01 2016 *)
Comments