cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-33 of 33 results.

A374490 Greatest common divisor of sums of n consecutive cubes.

Original entry on oeis.org

1, 1, 9, 4, 5, 9, 7, 8, 27, 5, 11, 36, 13, 7, 45, 16, 17, 27, 19, 20, 63, 11, 23, 72, 25, 13, 81, 28, 29, 45, 31, 32, 99, 17, 35, 108, 37, 19, 117, 40, 41, 63, 43, 44, 135, 23, 47, 144, 49, 25, 153, 52, 53, 81, 55, 56, 171, 29, 59, 180, 61
Offset: 1

Views

Author

Kaleb Williams, Jul 09 2024

Keywords

Comments

A quasipolynomial of order 12 and degree 2. - Charles R Greathouse IV, Jul 11 2024

Examples

			For n=3, the sum of 3 consecutive cubes is S(x) = x^3 + (x+1)^3 + (x+2)^3 which has S(0) = 9 and thereafter remains a multiple of 9 since S(x) - S(x-1) = 9*(x^2 + x + 1), so that the GCD of all S(x) is a(3) = 9.
		

Crossrefs

Cf. A026741 (for consecutive integers), A060789 (for consecutive squares).
Cf. A359380.

Programs

  • PARI
    f(n,x='x)=n*x^3 + (3/2*n^2 - 3/2*n)*x^2 + (n^3 - 3/2*n^2 + 1/2*n)*x + (1/4*n^4 - 1/2*n^3 + 1/4*n^2)
    Polya(P)=my(x=variable(P),D=poldegree(P),f=D!,t=0); forstep(d=D,0,-1, my(c=polcoef(P,d,x)*d!); P-=c*binomial(x,d); t=gcd(t,c); f/=max(d,1)); t
    a(n)=Polya(f(n)) \\ Charles R Greathouse IV, Jul 09 2024

Formula

From Stefano Spezia, Jul 10 2024: (Start)
G.f.: x*(1 + x + 9*x^2 + 4*x^3 + 5*x^4 + 9*x^5 + 7*x^6 + 8*x^7 + 27*x^8 + 5*x^9 + 11*x^10 + 36*x^11 + 11*x^12 + 5*x^13 + 27*x^14 + 8*x^15 + 7*x^16 + 9*x^17 + 5*x^18 + 4*x^19 + 9*x^20 + x^21 + x^22)/((1 - x)^2*(1 + x)^2*(1 + x^2)^2*(1 - x + x^2)^2*(1 + x + x^2)^2*(1 - x^2 + x^4)^2).
a(A359380(n)) = A359380(n). (End)
a(n) = n/2 if n is 2 or 10 mod 12; a(n) = 3n if n is 0, 3, or 9 mod 12; a(n) = 3n/2 if n = 6 mod 12; and a(n) = n otherwise (if n is 1, 4, 5, 7, 8, or 11 mod 12). In particular, n/2 <= a(n) <= 3n. - Charles R Greathouse IV, Jul 11 2024

Extensions

a(41)-a(61) from Charles R Greathouse IV, Jul 09 2024

A173630 Denominator of A002445(n)/A145979(n).

Original entry on oeis.org

1, 1, 2, 5, 1, 7, 4, 3, 1, 11, 2, 13, 1, 5, 8, 17, 3, 19, 2, 7, 1, 23, 4, 25, 1, 9, 14, 29, 1, 31
Offset: 0

Views

Author

Paul Curtz, Nov 23 2010

Keywords

Comments

Fractions: 1,1,15/2,21/5,10,33/7,1365/4,1/3,102,...
Second bisection is A146535(n+2).

Crossrefs

A329494 Numerator of 2*(2*n+1)/(n+2).

Original entry on oeis.org

1, 2, 5, 14, 3, 22, 13, 10, 17, 38, 7, 46, 25, 18, 29, 62, 11, 70, 37, 26, 41, 86, 15, 94, 49, 34, 53, 110, 19, 118, 61, 42, 65, 134, 23, 142, 73, 50, 77, 158, 27, 166, 85, 58, 89, 182, 31, 190, 97, 66, 101, 206, 35, 214, 109, 74, 113, 230, 39, 238, 121
Offset: 0

Views

Author

N. J. A. Sloane, Nov 17 2019 following a suggestion from Gary W. Adamson

Keywords

Comments

Also the numerator of Catalan(n+1)/Catalan(n). For denominators - in both cases - see A060789.
The GCD of 2(2n+1) and n+2 is the GCD of 2*3 and n+2, i.e. a(n) = 2n+1 if 2|n+2, a(n) = 2(2n+1)/3 if 3|n+2, and a(n)=(2n+1)/3 if 6|n+2, and a(n)=2(2n+1) otherwise. - R. J. Mathar, Jan 09 2020

Examples

			Fractions begin with 1, 2, 5/2, 14/5, 3, 22/7, 13/4, 10/3, 17/5, 38/11, 7/2, ...
		

Crossrefs

Programs

  • Magma
    [Numerator(2*(2*n+1)/(n+2)): n in [0..60]]; // Vincenzo Librandi, Jan 10 2020
  • Mathematica
    Numerator@Table[(2 (2 n + 1) / (n + 2)), {n, 0, 60}] (* Vincenzo Librandi, Jan 10 2020 *)
  • PARI
    a(n) = numerator(2*(2*n+1)/(n+2)); \\ Michel Marcus, Nov 17 2019
    

Formula

From Colin Barker, Nov 17 2019: (Start)
G.f.: (1 + 5*x^2 + x^4)*(1 + 2*x + 4*x^3 + 2*x^4 + x^6 + 2*x^7) / (1 - 2*x^6 + x^12).
a(n) = 2*a(n-6) - a(n-12) for n>11. (End)
a(n) = -(1/18)*(1 + 2*n)*(-21 + 2*cos(n*Pi/3) - 6*cos(2*n*Pi/3) + 7*(-1)^n + 2*sqrt(3)*sin(n*Pi/3) + 6*sqrt(3)*sin(2*n*Pi/3)). - Stefano Spezia, Nov 17 2019 after Colin Barker
Sum_{k=1..n} a(k) ~ (7/6) * n^2. - Amiram Eldar, Apr 04 2024
Previous Showing 31-33 of 33 results.