cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A309031 Numbers k for which rank of the elliptic curve y^2=x^3+k*x is 4.

Original entry on oeis.org

1918, 5190, 6123, 6953, 9603, 10759, 12483, 13398, 14673, 14795, 15910, 15934, 16238, 17753, 18278, 18705, 18814, 20148, 20398, 20658, 23180, 23953, 24475, 25988, 26809, 28633, 29274, 30340, 30688, 31073, 31098, 31174, 32118, 33218, 33278, 34804, 36955, 37214, 37298
Offset: 1

Views

Author

Seiichi Manyama, Jul 08 2019

Keywords

Crossrefs

Cf. A002158 (rank 0), A002159 (rank 1), A076329 (rank 2), A309030 (rank 3), this sequence (rank 4).

Programs

  • Magma
    for k in[1..10000] do if Rank(EllipticCurve([0,0,0,k,0])) eq 4 then print k; end if; end for; // Vaclav Kotesovec, Jul 08 2019
  • PARI
    for(k=1, 1e4, if(ellanalyticrank(ellinit([0, 0, 0, k, 0]))[1]==4, print1(k", ")))
    

A228227 Primes congruent to {7, 11} mod 16.

Original entry on oeis.org

7, 11, 23, 43, 59, 71, 103, 107, 139, 151, 167, 199, 251, 263, 283, 311, 331, 347, 359, 379, 439, 443, 487, 491, 503, 523, 571, 587, 599, 619, 631, 647, 683, 727, 743, 811, 823, 827, 839, 859, 887, 907, 919, 967, 971, 983, 1019, 1031, 1051, 1063, 1163, 1223
Offset: 1

Views

Author

Arkadiusz Wesolowski, Aug 16 2013

Keywords

Comments

Union of A141194 and A141195.
Let p be a prime number and let E(p) denote the elliptic curve y^2 = x^3 + p*x. If p is in the sequence, then the rank of E(p) is 0. Therefore A060953(a(n)) = 0.

References

  • J. H. Silverman, The arithmetic of elliptic curves, Springer, NY, 1986, p. 311.

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(1223) | p mod 16 in {7, 11}];
  • Mathematica
    Select[Prime@Range[200], MemberQ[{7, 11}, Mod[#, 16]] &]

A228228 Primes congruent to {3, 5, 13, 15} mod 16.

Original entry on oeis.org

3, 5, 13, 19, 29, 31, 37, 47, 53, 61, 67, 79, 83, 101, 109, 127, 131, 149, 157, 163, 173, 179, 181, 191, 197, 211, 223, 227, 229, 239, 269, 271, 277, 293, 307, 317, 349, 367, 373, 383, 389, 397, 419, 421, 431, 461, 463, 467, 479, 499, 509, 541, 547, 557, 563
Offset: 1

Views

Author

Arkadiusz Wesolowski, Aug 16 2013

Keywords

Comments

Union of A091968, A127589, A141196, and A127576.
Let p be a prime number and let E(p) denote the elliptic curve y^2 = x^3 + p*x. If p is in the sequence, then the rank of E(p) is 0 or 1. Therefore, A060953(a(n)) must be one of only two values: 0 or 1.

References

  • J. H. Silverman, The arithmetic of elliptic curves, Springer, NY, 1986, p. 311.

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(563) | p mod 16 in {3, 5, 13, 15}];
  • Mathematica
    Select[Prime@Range[103], MemberQ[{3, 5, 13, 15}, Mod[#, 16]] &]

A309061 Rank of elliptic curve y^2 = x^3 + n^2 * x.

Original entry on oeis.org

0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 2, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 2, 2, 0, 1, 0, 0, 1, 1, 1, 2, 1, 1, 0, 0, 2, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 2
Offset: 1

Views

Author

Seiichi Manyama, Jul 09 2019

Keywords

Crossrefs

Programs

  • PARI
    {a(n) = ellanalyticrank(ellinit([0, 0, 0, n^2, 0]))[1]}

Formula

a(n) = A060953(n^2).

A386928 Algebraic rank of elliptic curve y^2 = x^3 + n*x + n.

Original entry on oeis.org

1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 2, 0, 0, 1, 2, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 2, 1, 2, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 2, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 2, 2, 1, 0, 1, 2, 1, 1, 1, 2, 0
Offset: 1

Views

Author

Shreyansh Jaiswal, Aug 08 2025

Keywords

Comments

Terms from n = 29 onward are the analytic ranks (see PARI code) of the corresponding elliptic curves. By the BSD conjecture, these are expected to equal the algebraic ranks. Thus, the validity of these terms is conditional on BSD.

Examples

			a(1) = 1 because y^2 = x^3 + x + 1 has rank 1.
		

Crossrefs

Programs

  • PARI
    a(n) = ellanalyticrank(ellinit([n, n]))[1]; \\ Jinyuan Wang, Aug 08 2025
  • SageMath
    for k in range(1,29):
        E = EllipticCurve([k,k])
        print(E.rank(),end=", ")
    

Extensions

More terms from Jinyuan Wang, Aug 08 2025
Previous Showing 11-15 of 15 results.