cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 22 results. Next

A061140 Number of degree-n odd permutations of order exactly 8.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 5040, 45360, 226800, 831600, 9979200, 103783680, 2058376320, 23870246400, 265686220800, 2477893017600, 47031546481920, 656384611034880, 11972743148620800, 165640695384729600, 1969108505560627200
Offset: 0

Views

Author

Vladeta Jovovic, Apr 14 2001

Keywords

Crossrefs

Formula

E.g.f.: - 1/2*exp(x + 1/2*x^2 + 1/4*x^4) + 1/2*exp(x - 1/2*x^2 - 1/4*x^4) + 1/2*exp(x + 1/2*x^2 + 1/4*x^4 + 1/8*x^8) - 1/2*exp(x - 1/2*x^2 - 1/4*x^4 - 1/8*x^8).

A061130 Number of degree-n even permutations of order dividing 6.

Original entry on oeis.org

1, 1, 1, 3, 12, 36, 126, 666, 6588, 44892, 237996, 2204676, 26370576, 219140208, 1720782792, 19941776856, 234038005776, 2243409386256, 23225205107088, 295070141019312, 4303459657780416, 55200265166477376, 660776587455193056
Offset: 0

Views

Author

Vladeta Jovovic, Apr 14 2001

Keywords

Crossrefs

Formula

E.g.f.: 1/2*exp(x + 1/2*x^2 + 1/3*x^3 + 1/6*x^6) + 1/2*exp(x - 1/2*x^2 + 1/3*x^3 - 1/6*x^6).

A061134 Number of degree-n even permutations of order exactly 8.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 226800, 2494800, 29937600, 259459200, 1816214400, 10897286400, 301491590400, 4419628012800, 51209462304000, 482551041772800, 6979977625420800, 92611036249804800, 2078225819199129600
Offset: 1

Views

Author

Vladeta Jovovic, Apr 14 2001

Keywords

Crossrefs

Formula

E.g.f.: - 1/2*exp(x + 1/2*x^2 + 1/4*x^4) - 1/2*exp(x - 1/2*x^2 - 1/4*x^4) + 1/2*exp(x + 1/2*x^2 + 1/4*x^4 + 1/8*x^8) + 1/2*exp(x - 1/2*x^2 - 1/4*x^4 - 1/8*x^8).

A061137 Number of degree-n odd permutations of order dividing 6.

Original entry on oeis.org

0, 0, 1, 3, 6, 30, 270, 1386, 6048, 46656, 387180, 2469060, 17204616, 158065128, 1903506696, 18887563800, 163657221120, 2095170230016, 30792968596368, 346564643468976, 3905503235814240, 58609511127871200, 866032039742528736
Offset: 0

Views

Author

Vladeta Jovovic, Apr 14 2001

Keywords

Crossrefs

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp(x + x^3/3)*Sinh(x^2/2 + x^6/6) )); [0,0] cat [Factorial(n+1)*b[n]: n in [1..m-2]]; // G. C. Greubel, Jul 02 2019
    
  • Maple
    Egf:= exp(x + x^3/3)*sinh(x^2/2 + x^6/6):
    S:= series(Egf,x,31):
    seq(coeff(S,x,j)*j!,j=0..30); # Robert Israel, Jul 13 2018
  • Mathematica
    With[{m=30}, CoefficientList[Series[Exp[x + x^3/3]*Sinh[x^2/2 + x^6/6], {x, 0, m}], x]*Range[0,m]!] (* Vincenzo Librandi, Jul 02 2019 *)
  • PARI
    my(x='x+O('x^30)); concat([0,0], Vec(serlaplace( exp(x + x^3/3)*sinh(x^2/2 + x^6/6) ))) \\ G. C. Greubel, Jul 02 2019
    
  • Sage
    m = 30; T = taylor(exp(x + x^3/3)*sinh(x^2/2 + x^6/6), x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # G. C. Greubel, Jul 02 2019

Formula

E.g.f.: exp(x + x^3/3)*sinh(x^2/2 + x^6/6).
Linear recurrence of order 12 whose coefficients are polynomials in n of degree up to 15: see link. - Robert Israel, Jul 13 2018

A061138 Number of degree-n odd permutations of order exactly 4.

Original entry on oeis.org

0, 0, 0, 0, 6, 30, 90, 210, 1680, 12096, 114660, 833580, 5928120, 38112360, 259194936, 1739195640, 17043237120, 167089937280, 1837707369840, 18342985021776, 181206905922720, 1673742164139360, 16992525855006240
Offset: 0

Views

Author

Vladeta Jovovic, Apr 14 2001

Keywords

Crossrefs

Formula

E.g.f.: - 1/2*exp(x + 1/2*x^2) + 1/2*exp(x - 1/2*x^2) + 1/2*exp(x + 1/2*x^2 + 1/4*x^4) - 1/2*exp(x - 1/2*x^2 - 1/4*x^4).

A061139 Number of degree-n odd permutations of order exactly 6.

Original entry on oeis.org

0, 0, 0, 0, 0, 20, 240, 1260, 5600, 45360, 383040, 2451680, 17128320, 157769040, 1902380480, 18882623760, 163633317120, 2095059774080, 30792478993920, 346562329685760, 3905491275514880, 58609449249207360, 866031730098205440
Offset: 0

Views

Author

Vladeta Jovovic, Apr 14 2001

Keywords

Crossrefs

Formula

E.g.f.: - 1/2*exp(x + 1/2*x^2) + 1/2*exp(x - 1/2*x^2) + 1/2*exp(x + 1/2*x^2 + 1/3*x^3 + 1/6*x^6) - 1/2*exp(x - 1/2*x^2 + 1/3*x^3 - 1/6*x^6).

A061122 Number of degree-n permutations of order exactly 8.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 5040, 45360, 453600, 3326400, 39916800, 363242880, 3874590720, 34767532800, 567177811200, 6897521030400, 98241008785920, 1138935652807680, 18952720774041600, 258251731634534400
Offset: 1

Views

Author

Vladeta Jovovic, Apr 14 2001

Keywords

Crossrefs

Formula

E.g.f.: -exp(x+1/2*x^2+1/4*x^4)+exp(x+1/2*x^2+1/4*x^4+1/8*x^8).

A061123 Number of degree-n permutations of order exactly 9.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 40320, 403200, 2217600, 26611200, 259459200, 1695133440, 16345929600, 161902540800, 1208560953600, 50830132953600, 866513503215360, 8470676211379200, 166891791625977600, 2699606616475507200
Offset: 1

Views

Author

Vladeta Jovovic, Apr 14 2001

Keywords

Crossrefs

Formula

E.g.f.: -exp(x+1/3*x^3)+exp(x+1/3*x^3+1/9*x^9).

A061124 Number of degree-n permutations of order exactly 10.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 504, 4032, 27216, 514080, 4823280, 57081024, 500972472, 4412103696, 60619398840, 686638592640, 9335025764064, 104304736815552, 1180585704051936, 29016515871665280, 478096386437121480
Offset: 1

Views

Author

Vladeta Jovovic, Apr 14 2001

Keywords

Crossrefs

Formula

E.g.f.: exp(x) - exp(x+1/2*x^2) - exp(x+1/5*x^5) + exp(x+1/2*x^2+1/5*x^5+1/10*x^10).
From Benedict W. J. Irwin, May 27 2016: (Start)
Let y1(0)=1, y1(1)=1,
Let -y1(n)-y1(n+1)+(n+2)*y1(n+2)=0,
Let y2(0)=1, y2(1)=1, y2(2)=1/2, y2(3)=1/6, y2(4)=1/24,
Let -y2(n)-y2(n+4)+(n+5)*y2(n+5)=0,
Let y3(0)=1, y3(1)=1, y3(2)=1, y3(3)=2/3, y3(4)=5/12, y3(5)=5/12, y3(6)=11/36, y3(7)=31/126, y3(8)=307/2016, y3(9)=1643/18144,
Let -y3(n)-y3(n+5)-y3(n+8)-y3(n+9)+(n+10)*y3(n+10)=0,
a(n) = 1+n!*(y3(n)-y2(n)-y1(n)).
(End)

A061125 Number of degree-n permutations of order exactly 12.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 420, 3360, 30240, 403200, 4019400, 80166240, 965284320, 12173441280, 162850287600, 2428557331200, 32123543612160, 534678700308480, 8126981741380320, 128338880777251200, 2080312367956502400, 36351373041072122880, 606331931399062693440
Offset: 1

Views

Author

Vladeta Jovovic, Apr 14 2001

Keywords

Crossrefs

Programs

  • Mathematica
    nn=21;Range[0,nn]!CoefficientList[Series[(Exp[x^12/12]-1)Exp[x+x^2/2+x^3/3+x^4/4+x^6/6]+(Exp[x^6/6]-1)(Exp[x^4/4]-1)Exp[x+x^2/2+x^3/3]+(Exp[x^4/4]-1)(Exp[x^3/3]-1)Exp[x^2/2+x],{x,0,nn}],x]//Rest  (* Geoffrey Critzer, Feb 04 2013 *)

Formula

E.g.f.: exp(x + 1/2*x^2) - exp(x + 1/2*x^2 + 1/4*x^4) - exp(x + 1/2*x^2 + 1/3*x^3 + 1/6*x^6) + exp(x + 1/2*x^2 + 1/3*x^3 + 1/4*x^4 + 1/6*x^6 + 1/12*x^12).
Previous Showing 11-20 of 22 results. Next