cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A001128 Reverse digits of previous term and multiply by previous term.

Original entry on oeis.org

2, 4, 16, 976, 662704, 269896807264, 124883600543123110859968, 108643488775144622666209173128243503963147630528
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A061205.

Programs

  • Mathematica
    a[n_]:=If[n<2, 2,a[n - 1] * FromDigits[Reverse[IntegerDigits[a[n - 1]]]]]; Table[a[n], {n, 10}] (* Indranil Ghosh, Mar 18 2017 *)
  • PARI
    a(n) = if (n==1, 2, prev = a(n-1); prev*fromdigits(Vecrev(digits(prev)))); \\ Michel Marcus, Mar 18 2017
    
  • Python
    def a(n): return 2 if n<2 else a(n - 1) * int(str(a(n - 1))[::-1]) # Indranil Ghosh, Mar 18 2017

Formula

a(n) = A061205(a(n-1)) for n>1, with a(1) = 2. - Michel Marcus, Mar 18 2017

A073041 n*R(n)-1 is prime, where R(n) is reverse of n.

Original entry on oeis.org

2, 12, 21, 30, 36, 60, 63, 90, 114, 132, 150, 162, 174, 192, 198, 204, 231, 237, 240, 246, 255, 261, 264, 291, 306, 330, 360, 378, 390, 402, 411, 420, 438, 447, 456, 462, 471, 477, 495, 510, 552, 588, 594, 603, 609, 627, 630, 642, 654, 669, 690, 726, 732
Offset: 1

Views

Author

Shyam Sunder Gupta, Aug 23 2002

Keywords

Comments

From Robert Israel, Jul 25 2019: (Start)
If n is in the sequence and is not divisible by 10, then A004086(n) is in the sequence.
All terms except 2 are divisible by 3. (End)

Examples

			12 is a term because 12*21-1=251 is prime.
		

Crossrefs

Programs

  • Maple
    revdigs:= proc(n) local L,i;
      L:= convert(n,base,10);
      add(L[-i]*10^(i-1),i=1..nops(L))
    end proc:
    select(t -> isprime(t*revdigs(t)-1), [$1..1000]); # Robert Israel, Jul 25 2019
  • Mathematica
    Select[Range[800],PrimeQ[# IntegerReverse[#]-1]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jul 05 2020 *)

A270926 Numbers k such that k*R(k) can be represented as the sum of two nonzero squares, where R(k) is the reverse of the decimal expansion of k.

Original entry on oeis.org

5, 10, 15, 16, 18, 20, 25, 30, 37, 40, 50, 51, 52, 55, 58, 60, 61, 70, 73, 78, 80, 81, 85, 87, 89, 90, 98, 100, 101, 104, 106, 109, 110, 111, 122, 125, 128, 145, 146, 148, 149, 150, 159, 160, 162, 164, 165, 168, 169, 174, 176, 180, 181, 192, 195, 198, 200, 202, 208, 212, 220, 221, 222
Offset: 1

Views

Author

Soumil Mandal, Mar 26 2016

Keywords

Comments

k*R(k) is the square of the hypotenuse of a right triangle.
Palindromes in this sequence are 5, 55, 101, 111, 181, 202, 212, 222, 232, 272, 292, 303, 313, 323, 333, 353, 373, ... - Altug Alkan, Mar 26 2016

Examples

			For k=5, R(k)=5 and k*R(k)=25, which is 3^2 + 4^2.
For k=10, R(k)=1 and k*R(k)=10, which is 1^2 + 3^2.
For k=58, R(k)=85 and k*R(k)=4930, which is 13^2 + 69^2.
		

Crossrefs

Programs

  • Mathematica
    Select[Range@ 222, Length[PowersRepresentations[# FromDigits@ Reverse@ IntegerDigits@ #, 2, 2] /. {0, } -> Nothing] > 0 &] (* _Michael De Vlieger, Mar 26 2016 *)
    stnzsQ[{a_,b_}]:=AllTrue[{a,b},IntegerQ[Sqrt[#]]&]; Select[Range[ 250], Length[ Select[IntegerPartitions[#  IntegerReverse[#],{2}],stnzsQ]] >0&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Dec 12 2020 *)
  • PARI
    isA000404(n) = {for( i=1, #n=factor(n)~%4, n[1, i]==3 && n[2, i]%2 && return); n && ( vecmin(n[1, ])==1 || (n[1, 1]==2 && n[2, 1]%2))}
    lista(nn) = for(n=1, nn, if(isA000404(n*eval(concat(Vecrev(Str(n))))), print1(n, ", "))); \\ Altug Alkan, Mar 26 2016
    
  • Python
    # Soumil Mandal, Mar 27 2016
    def isHypotenuse(num):
        a, b = 1, 1
        a2, b2 = a**2, b**2
        while a2 + b2 <= num:
            while a2 + b2 <= num:
                if a2 + b2 == num:
                    return True
                b += 1
                b2 = b**2
            a += 1
            a2 = a**2
            b = 1
            b2 = b**2
        return False
    for x in range(20000):
        if isHypotenuse(x * int(str(x)[::-1])):
            print(x)

Extensions

More terms from Altug Alkan, Mar 26 2016

A277258 Numbers such that n+R(n) | n*R(n), where R(n) is the digits reverse of n.

Original entry on oeis.org

2, 4, 6, 8, 22, 44, 66, 88, 110, 132, 198, 202, 212, 220, 222, 231, 232, 242, 252, 262, 264, 272, 282, 292, 297, 330, 396, 404, 414, 424, 434, 440, 444, 454, 462, 464, 474, 484, 494, 495, 550, 594, 606, 616, 626, 636, 646, 656, 660, 666, 676, 686, 693, 696, 770
Offset: 1

Views

Author

Paolo P. Lava, Oct 07 2016

Keywords

Comments

This sequence contains all positive terms of A029951. So the sequence is infinite. - Altug Alkan, Oct 07 2016

Examples

			R(132) = 231, (132 * 231) / (132 + 231) = 30492 / 363 = 84.
		

Crossrefs

Programs

  • Maple
    R:=proc(w) local x, y, z; x:=w; y:=0; for z from 1 to ilog10(x)+1 do y:=10*y+(x mod 10); x:=trunc(x/10); od; y; end: P:= proc(q) local n; for n from 1 to q do if type(n*R(n)/(n+R(n)),integer) then print(n); fi; od; end: P(10^4);
  • Mathematica
    Select[Range@ 770, Function[r, Mod[# r, # + r] == 0]@ FromDigits@ Reverse@ IntegerDigits@ # &] (* Michael De Vlieger, Oct 14 2016 *)
  • PARI
    R(n) = eval(concat(Vecrev(Str(n))));
    isok(n) = n*R(n) % (n+R(n)) == 0; \\ Michel Marcus, Oct 15 2016

A305131 Numbers k with the property that there exists a positive integer multiplier M such that M times the sum of the digits of k, multiplied further by the reversal of this product, gives k.

Original entry on oeis.org

1, 10, 40, 81, 100, 400, 640, 736, 810, 1000, 1300, 1458, 1729, 1944, 2268, 2430, 3640, 4000, 6400, 7360, 7744, 8100, 10000, 12070, 12100, 13000, 14580, 16120, 17290, 19440, 22680, 23632, 24300, 27010, 30250, 31003, 36400, 38152, 40000, 42282, 51142, 63504
Offset: 1

Views

Author

Viorel Nitica, May 26 2018

Keywords

Comments

These numbers are related to the taxicab number 1729, which has multiplier 1. This is why they might be called "multiplicative Hardy-Ramanujan numbers".
If a(n) is in the sequence, then 10 * a(n) is also in the sequence, with the multiplier 10 times larger. We could call primitive the terms not of this form. Primitive terms which end in 0 are 40, 640, 1300, 2430, 3640, 12070, 12100, 16120, 27010, ... - M. F. Hasler, May 27 2018

Examples

			For k = 1729 the sum of the digits is 19 and M = 1: 19 * 91 = 1729.
For k = 122512 the sum of the digits is 13 and M = 31: 13 * 31 = 403 and 403 * 304 = 122512.
		

Crossrefs

Subsequence of A005349 (Niven numbers).

Programs

  • PARI
    select( is(n,s=sumdigits(n))=n&&!frac(n/=s)&&fordiv(n,M,fromdigits(Vecrev(digits(s*M)))*M==n&&return(1)), [0..10^5]) \\ M. F. Hasler, May 27 2018

A116065 Numbers k, not ending in 0, such that k times its digital reverse gives a number made of nontrivial runs of identical digits.

Original entry on oeis.org

88, 385, 583, 1426, 5236, 5929, 6241, 6325, 9295, 284213, 312482, 1001099, 9901001, 15046244, 44264051, 101127144, 176452305, 220741304, 403147022, 441721101, 469671917, 503254671, 719176964, 1110212002, 1111340003, 1315098605, 2002120111, 2024968033, 2433379564
Offset: 1

Views

Author

Giovanni Resta, Feb 13 2006

Keywords

Comments

A run of length 1 is trivial.

Examples

			15046244 * 44264051 = 666007711774444.
5236 * 6325 = 33117700.
		

Crossrefs

Programs

  • Mathematica
    okQ[n_]:=Module[{idn=IntegerDigits[n],revnt},revnt=n FromDigits[Reverse[ idn]]; Last[idn]!=0&&Min[Length/@Split[ IntegerDigits[revnt]]]>1]; Select[Range[10^6],okQ] (* Harvey P. Dale, Jan 04 2012 *)

Extensions

Corrected and extended by Giovanni Resta, Aug 30 2025
Incorrect comment removed by Jason Yuen, Aug 30 2025
Previous Showing 11-16 of 16 results.