cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 28 results. Next

A320782 Inverse Euler transform of the unsigned Moebius function A008966.

Original entry on oeis.org

1, 1, 0, 0, -1, 1, 0, 0, -1, 1, 0, 0, -2, 3, 0, -1, -3, 6, -3, 0, -6, 12, -6, 0, -9, 23, -17, 0, -15, 47, -40, 8, -24, 91, -101, 34, -46, 181, -230, 109, -92, 354, -534, 323, -208, 690, -1177, 883, -520, 1365, -2603, 2297, -1377, 2760, -5641, 5789, -3721, 5741
Offset: 0

Views

Author

Gus Wiseman, Oct 22 2018

Keywords

Comments

The Euler transform of a sequence q is the sequence of coefficients of x^n, n > 0, in the expansion of Product_{n > 0} 1/(1 - x^n)^q(n). The constant term 1 is sometimes taken to be the zeroth part of the Euler transform.

Crossrefs

Number theoretical functions: A000005, A000010, A000203, A001055, A001221, A001222, A008683, A010054.
Inverse Euler transforms: A059966, A320767, A320776, A320777, A320778, A320779, A320780, A320781.

Programs

  • Mathematica
    EulerInvTransform[{}]={};EulerInvTransform[seq_]:=Module[{final={}},For[i=1,i<=Length[seq],i++,AppendTo[final,i*seq[[i]]-Sum[final[[d]]*seq[[i-d]],{d,i-1}]]];
    Table[Sum[MoebiusMu[i/d]*final[[d]],{d,Divisors[i]}]/i,{i,Length[seq]}]];
    EulerInvTransform[Table[Abs[MoebiusMu[n]],{n,30}]]

A301875 Expansion of Product_{k>=1} 1/(1 - x^k)^A007434(k).

Original entry on oeis.org

1, 1, 4, 12, 30, 78, 184, 448, 1033, 2361, 5292, 11676, 25382, 54470, 115508, 242132, 502520, 1032632, 2103172, 4246948, 8507968, 16915536, 33391788, 65470332, 127539321, 246928233, 475274592, 909658536, 1731703788, 3279644604, 6180528236
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 28 2018

Keywords

Comments

Euler transform of A007434.

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Exp[Sum[Sum[Sum[d^2 MoebiusMu[k/d], {d, Divisors @ k}] * x^(j*k) / j, {k, 1, Floor[nmax/j] + 1}], {j, 1, nmax}]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Mar 31 2018 *)

Formula

a(n) ~ exp(4*Pi*n^(3/4) / (3^(5/4) * (5*Zeta(3))^(1/4)) + Zeta(3) / (2*Pi^2)) / (2^(3/2) * (15*Zeta(3))^(1/8) * n^(5/8)).

A318975 Expansion of Product_{k>=1} ((1 + x^k)/(1 - x^k))^phi(k), where phi is the Euler totient function A000010.

Original entry on oeis.org

1, 2, 4, 10, 20, 42, 80, 154, 288, 522, 940, 1658, 2892, 4970, 8456, 14218, 23696, 39122, 64044, 104042, 167732, 268602, 427248, 675482, 1061632, 1659298, 2579676, 3990418, 6142892, 9412906, 14360136, 21814698, 33004704, 49739426, 74677924, 111713658
Offset: 0

Views

Author

Vaclav Kotesovec, Sep 06 2018

Keywords

Comments

Convolution of A299069 and A061255.

Examples

			a(n) ~ exp(3^(4/3) * (7*Zeta(3))^(1/3) * n^(2/3) / (2*Pi^(2/3)) - 1/6) * A^2 * (7*Zeta(3))^(1/9) / (sqrt(2) * 3^(7/18) * Pi^(8/9) * n^(11/18)), where A is the Glaisher-Kinkelin constant A074962.
		

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[((1+x^k)/(1-x^k))^EulerPhi[k], {k, 1, nmax}], {x, 0, nmax}], x]

A226106 G.f.: exp( Sum_{n>=1} A068963(n)*x^n/n ) where A068963(n) = Sum_{d|n} phi(d^3).

Original entry on oeis.org

1, 1, 3, 9, 20, 52, 105, 253, 536, 1142, 2421, 4999, 10278, 20686, 41512, 81984, 161029, 312681, 603070, 1153284, 2189331, 4129537, 7733317, 14399693, 26644337, 49034811, 89741600, 163411148, 296074694, 533909026, 958416113, 1712893825, 3048468607, 5403248469, 9539609984
Offset: 0

Views

Author

Paul D. Hanna, May 26 2013

Keywords

Comments

Here phi(n) = A000010(n) is the Euler totient function.
Euler transform of A002618. - Vaclav Kotesovec, Mar 30 2018

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 9*x^3 + 20*x^4 + 52*x^5 + 105*x^6 + 253*x^7 +...
where
log(A(x)) = x + 5*x^2/2 + 19*x^3/3 + 37*x^4/4 + 101*x^5/5 + 95*x^6/6 + 295*x^7/7 + 293*x^8/8 + 505*x^9/9 +...+ A068963(n)*x^n/n +...
		

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[1/(1-x^k)^(k*EulerPhi[k]), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Mar 30 2018 *)
    nmax = 40; CoefficientList[Series[Product[1/(1-x^k)^EulerPhi[k^2], {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Mar 30 2018 *)
    nmax = 40; CoefficientList[Series[Exp[Sum[Sum[k*EulerPhi[k] * x^(j*k) / j, {k, 1, Floor[nmax/j] + 1}], {j, 1, nmax}]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Mar 31 2018 *)
  • PARI
    {a(n)=polcoeff(exp(sum(m=1,n+1,sumdiv(m,d,eulerphi(d^3))*x^m/m)+x*O(x^n)),n)}
    for(n=0,35,print1(a(n),", "))

Formula

a(n) ~ exp(2^(9/4) * sqrt(Pi) * n^(3/4) / (3 * 5^(1/4)) + 3*Zeta(3) / Pi^2) / (2^(11/8) * 5^(1/8) * Pi^(1/4) * n^(5/8)). - Vaclav Kotesovec, Mar 30 2018

A318811 Expansion of e.g.f. exp(Sum_{k>=1} phi(k)*x^k), where phi is the Euler totient function A000010.

Original entry on oeis.org

1, 1, 3, 19, 121, 1161, 9931, 124363, 1542129, 21594961, 335083411, 5712781251, 104044684393, 2036445474649, 42781075481691, 943820382272251, 22433542236603361, 556276331238284193, 14612462927067954979, 401110580118493111411, 11553483337639043003481
Offset: 0

Views

Author

Vaclav Kotesovec, Sep 04 2018

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 25; CoefficientList[Series[Exp[Sum[EulerPhi[k]*x^k, {k, 1, nmax}]], {x, 0, nmax}], x] * Range[0, nmax]!
  • PARI
    my(N=40, x='x+O('x^N)); Vec(serlaplace(exp(sum(k=1, N, eulerphi(k)*x^k)))) \\ Seiichi Manyama, Apr 07 2022
    
  • PARI
    a(n) = if(n==0, 1, (n-1)!*sum(k=1, n, k*eulerphi(k)*a(n-k)/(n-k)!)); \\ Seiichi Manyama, Apr 07 2022

Formula

a(n) ~ 2^(1/3) * exp(1/6 + 3^(4/3) * n^(2/3) / (2^(1/3) * Pi^(2/3)) - n) * n^(n - 1/6) / (3*Pi)^(1/3).
a(0) = 1; a(n) = (n-1)! * Sum_{k=1..n} k * phi(k) * a(n-k)/(n-k)!. - Seiichi Manyama, Apr 07 2022

A381679 Euler transform of A000056.

Original entry on oeis.org

1, 1, 7, 31, 100, 364, 1152, 3864, 12102, 37358, 113618, 337562, 990798, 2857926, 8144334, 22902470, 63660695, 175026047, 476242001, 1283435153, 3427047146, 9072455146, 23820491998, 62057045134, 160471504373, 412022656517, 1050740365571, 2662223436203
Offset: 0

Views

Author

Seiichi Manyama, Mar 04 2025

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[n_] := a[n] = Sum[DivisorSigma[4, k^2]/DivisorSigma[2, k^2]*a[n-k], {k, 1, n}]/n; Table[a[n], {n, 0, 30}] (* Vaclav Kotesovec, Mar 04 2025 *)
  • PARI
    my(N=30, x='x+O('x^N)); Vec(exp(sum(k=1, N, sigma(k^2, 4)/sigma(k^2, 2)*x^k/k)))

Formula

G.f.: 1/Product_{k>=1} (1 - x^k)^A000056(k).
G.f.: exp( Sum_{k>=1} sigma_4(k^2)/sigma_2(k^2) * x^k/k ).
a(0) = 1; a(n) = (1/n) * Sum_{k=1..n} sigma_4(k^2)/sigma_2(k^2) * a(n-k).
a(n) ~ exp(5*(3*zeta(5)/zeta(3))^(1/5) * n^(4/5) / 2^(7/5) - 1/10 - 12*zeta'(-3)) * A^(6/5) * (3*zeta(5)/zeta(3))^(3/25) / (2^(7/50) * sqrt(5*Pi) * n^(31/50)), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Mar 04 2025

A301986 Expansion of Product_{k>=1} (1 + x^k)^(k*A000010(k)), where A000010 is the Euler totient function.

Original entry on oeis.org

1, 1, 2, 8, 15, 41, 75, 179, 378, 748, 1591, 3133, 6369, 12357, 24225, 46691, 89301, 169589, 318413, 596255, 1103468, 2036880, 3725353, 6786021, 12281026, 22107132, 39604155, 70566697, 125209095, 221048851, 388705826, 680465440, 1186649341, 2061086935
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 30 2018

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[(1+x^k)^(k*EulerPhi[k]), {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 40; CoefficientList[Series[Exp[Sum[(-1)^(j + 1)/j * Sum[k*EulerPhi[k] * x^(j*k), {k, 1, Floor[nmax/j] + 1}], {j, 1, nmax}]], {x, 0, nmax}], x]

Formula

a(n) ~ exp(2^(3/2) * 7^(1/4) * sqrt(Pi) * n^(3/4) / (3 * 5^(1/4))) * 7^(1/8) / (2^(7/4) * 5^(1/8) * Pi^(1/4) * n^(5/8)).

A319111 Expansion of Product_{k>=1} 1/(1 - phi(k)*x^k), where phi = Euler totient function (A000010).

Original entry on oeis.org

1, 1, 2, 4, 7, 13, 22, 38, 63, 105, 174, 278, 447, 707, 1122, 1766, 2729, 4213, 6482, 9880, 15069, 22799, 34290, 51378, 76777, 114365, 169324, 250162, 368505, 540575, 792042, 1154798, 1680385, 2439101, 3530308, 5103380, 7349875, 10564955, 15155752, 21696072, 31007949, 44199845
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 10 2018

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory): a:=series(mul(1/(1-phi(k)*x^k),k=1..50),x=0,42): seq(coeff(a,x,n),n=0..41); # Paolo P. Lava, Apr 02 2019
  • Mathematica
    nmax = 41; CoefficientList[Series[Product[1/(1 - EulerPhi[k] x^k), {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 41; CoefficientList[Series[Exp[Sum[Sum[EulerPhi[j]^k x^(j k)/k, {j, 1, nmax}], {k, 1, nmax}]], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d EulerPhi[d]^(k/d), {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 41}]

Formula

G.f.: exp(Sum_{k>=1} Sum_{j>=1} phi(j)^k*x^(j*k)/k).
From Vaclav Kotesovec, Feb 08 2019: (Start)
a(n) ~ c * 2^(2*n/5), where
c = 18827.6460615531202942792897255332975807324818737172163... if mod(n,5) = 0
c = 18827.5079339024144115146595255453426552477117955925738... if mod(n,5) = 1
c = 18827.4967567108036710998657106724179082561779712900405... if mod(n,5) = 2
c = 18827.4818413568083742650057347700058389606441225811016... if mod(n,5) = 3
c = 18827.4547665561882994953942505862213438332903500716893... if mod(n,5) = 4
(End)

A308457 Expansion of e.g.f. (1/(1 - x)) * Product_{k>=2} 1/(1 - x^k)^(phi(k)/2), where phi() is the Euler totient function (A000010).

Original entry on oeis.org

1, 1, 3, 15, 93, 765, 6615, 73395, 855225, 11348505, 163593675, 2633729175, 44537325525, 829112008725, 16299062754975, 340762189642875, 7597436750528625, 178862527106888625, 4426363064514265875, 115222810432347993375, 3139125774622690978125
Offset: 0

Views

Author

Ilya Gutkovskiy, May 27 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[1/(1 - x) Product[1/(1 - x^k)^(EulerPhi[k]/2), {k, 2, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
    nmax = 20; CoefficientList[Series[Exp[Sum[Sum[LCM[k, j], {j, 1, k}] x^k/k^2, {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!
    a[n_] := a[n] = Sum[Total[Numerator[Range[k]/k]] k! Binomial[n - 1, k - 1] a[n - k]/k, {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 20}]

Formula

E.g.f.: exp(Sum_{k>=1} A057661(k)*x^k/k).
E.g.f.: exp(Sum_{k>=1} A051193(k)*x^k/k^2).
E.g.f.: d/dx ( exp(arctanh(x)) ) * Product_{k>=3} 1/(1 - x^k)^A023022(k).
a(n) ~ A * exp(3^(4/3) * Zeta(3)^(1/3) * n^(2/3) / (2*Pi)^(2/3) - n - 1/12) * n^(n + 1/36) / (2^(1/9) * 3^(19/36) * (Pi*Zeta(3))^(1/36)), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, May 28 2019
E.g.f.: Product_{k>=1} 1/(1 - x^k)^(A023896(k)/k). - Ilya Gutkovskiy, May 28 2019

A320784 Negated inverse Euler transform of {-1 if n is a triangular number else 0, n > 0} = -A010054.

Original entry on oeis.org

1, 1, 0, 1, 1, 1, 2, 3, 3, 5, 8, 11, 14, 23, 31, 47, 68, 101, 144, 217, 315, 471, 693, 1035, 1528, 2287, 3397, 5085, 7587, 11377, 17017, 25565, 38349, 57681, 86724, 130645, 196778, 296853, 447864, 676479, 1022082, 1545685, 2338299, 3540111, 5361606, 8125551
Offset: 0

Views

Author

Gus Wiseman, Oct 22 2018

Keywords

Comments

The Euler transform of a sequence q is the sequence of coefficients of x^n, n > 0, in the expansion of Product_{n > 0} 1/(1 - x^n)^q(n). The constant term 1 is sometimes taken to be the zeroth part of the Euler transform.

Crossrefs

Programs

  • Mathematica
    EulerInvTransform[{}]={};EulerInvTransform[seq_]:=Module[{final={}},For[i=1,i<=Length[seq],i++,AppendTo[final,i*seq[[i]]-Sum[final[[d]]*seq[[i-d]],{d,i-1}]]];
    Table[Sum[MoebiusMu[i/d]*final[[d]],{d,Divisors[i]}]/i,{i,Length[seq]}]];
    -EulerInvTransform[-Table[SquaresR[1,8*n+1]/2,{n,30}]]
Previous Showing 11-20 of 28 results. Next