cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A064649 Row sums of the table A047916.

Original entry on oeis.org

1, 4, 12, 40, 140, 816, 5082, 40800, 363258, 3632880, 39916910, 479052528, 6227020956, 87178936992, 1307674429440, 20922800222848, 355687428096272, 6402373892575992, 121645100408832342, 2432902011892837920
Offset: 1

Views

Author

Antti Karttunen, Oct 04 2001

Keywords

Crossrefs

Also n*A061417[n]. Cf. A047918, A002619.

Programs

  • Haskell
    a064649 = sum . a047916_row  -- Reinhard Zumkeller, Mar 19 2014
  • Maple
    A064649 := proc(n) local d, s; s := 0; for d in divisors(n) do s := s + phi(n/d)*(n/d)^d*d!; od; RETURN(s); end;
  • Mathematica
    a[n_] := DivisorSum[n, EulerPhi[n/#]*(n/#)^#*#!&]; Array[a, 20] (* Jean-François Alcover, Mar 06 2016 *)
  • PARI
    { for (n=1, 100, a=0; v=divisors(n); for (i=1, length(v), d=v[i]; a+=eulerphi(n/d)*(n/d)^d*d!); write("b064649.txt", n, " ", a) ) } \\ Harry J. Smith, Sep 21 2009
    
  • PARI
    a(n) = sumdiv(n, d, eulerphi(n/d)*(n/d)^d*d!); \\ Michel Marcus, Mar 06 2016
    

Formula

a(n) = Sum_{d|n} phi(n/d)*(n/d)^d*d!. - Michel Marcus, Mar 06 2016

A064636 Number of derangements up to cyclic rotations; permutation siteswap necklaces, with no fixed points (no "zero-throws", i.e., empty hands, if we use the mapping Perm2SiteSwap1 of A060495 and A060498).

Original entry on oeis.org

0, 0, 1, 2, 5, 12, 55, 270, 1893, 14864, 133749, 1334970, 14687195, 176214852, 2290820923, 32071104006, 481066907653, 7697064251760, 130850098582189, 2355301661033970, 44750731672347273, 895014631193654828, 18795307257304746591, 413496759611120779902, 9510425471105377569963, 228250211305338670543432
Offset: 0

Views

Author

Antti Karttunen, Oct 02 2001

Keywords

Comments

This sequence counts derangements (enumerated by A000166) up to the same automorphism as permutations (enumerated by A000142) are subjected to in A061417.

Programs

  • Maple
    with(numtheory); A064636 := proc(n) local d,k,s; s := 0; for d in divisors(n) do s := s + (1/n) * phi(n/d) * ( (((n/d)^d)*A000166(d)) + add((((n/d)^(d-k)) * (((n/d)-1)^k) * (A000166(d-k)*binomial(d,k))),k=1..d)); od; RETURN(s); end;
  • Mathematica
    Unprotect[Power]; 0^0 = 1; a[n_] := (1/n) DivisorSum[n, EulerPhi[n/#]*Sum[ (n/#)^(# - k)*(n/# - 1)^k*#!*Gamma[# - k + 1, -1]/(E*k!*(# - k)!), {k, 0, #}]&] // FunctionExpand; a[0] = 0; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Mar 06 2016 *)

Formula

a(n) = Sum_{d|n} (1/n) * Phi(n/d) * Sum_{k=0..d} [ ((n/d)^(d-k)) * (((n/d)-1)^k) * A008290(d, k) ]. (Note: this abbreviated formula supposes that 0^0 = 1. For a practical implementation, see the Maple procedure below.)

A242099 Number of conjugacy classes of the symmetric group S_n when conjugating by the dihedral group D_n.

Original entry on oeis.org

1, 2, 3, 8, 18, 84, 387, 2670, 20373, 182796, 1816325, 19973962, 239523846, 3113717784, 43589470208, 653840410004, 10461400104968, 177843770847822, 3201186945761289, 60822551319191028, 1216451005946790780, 25545471110008012860, 562000363929678643211
Offset: 1

Views

Author

Attila Egri-Nagy, Aug 14 2014

Keywords

Crossrefs

Cf. A242101 (by alternating group), A000041 (by symmetric group itself), A061417 (by cyclic group).

Programs

  • GAP
    List([1..11],n->Size(OrbitsDomain(DihedralGroup(IsPermGroup,2*n),SymmetricGroup(IsPermGroup,n),\^)));
    
  • Sage
    def a(n) : return (sum(euler_phi(n//d) * (n//d)^d * factorial(d) for d in divisors(n))//n + [(factorial(n//2) + factorial((n+1)//2 - 1)) * 2^(n//2-1), factorial((n-1)//2) * 2^((n-1)//2)][n%2]) // 2 # Eric M. Schmidt, Aug 23 2014

Formula

a(n) = (A061417(n) + b(n))/2, where b(n) = ((n-1)/2)! * 2^((n-1)/2) if n is odd, b(n) = ((n/2)! + (n/2-1)!) * 2^(n/2-1) if n is even. - Eric M. Schmidt, Aug 23 2014

Extensions

More terms from Eric M. Schmidt, Aug 23 2014

A047917 Triangular array read by rows: a(n,k) = phi(n/k)*(n/k)^k*k!/n if k|n else 0 (1<=k<=n).

Original entry on oeis.org

1, 1, 1, 2, 0, 2, 2, 2, 0, 6, 4, 0, 0, 0, 24, 2, 6, 8, 0, 0, 120, 6, 0, 0, 0, 0, 0, 720, 4, 8, 0, 48, 0, 0, 0, 5040, 6, 0, 36, 0, 0, 0, 0, 0, 40320, 4, 20, 0, 0, 384, 0, 0, 0, 0, 362880, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3628800, 4, 12, 64, 324, 0, 3840, 0, 0, 0, 0
Offset: 1

Views

Author

Keywords

Examples

			1; 1,1; 2,0,2; 2,2,0,6; 4,0,0,0,24; 2,6,8,0,0,120; ...
		

References

  • J. E. A. Steggall, On the numbers of patterns which can be derived from certain elements, Mess. Math., 37 (1907), 56-61.

Crossrefs

Divide n-th row of A047916 by n.
Row sums give A061417.
Cf. A002024.

Programs

  • Haskell
    a047917 n k = a047917_tabl !! (n-1) !! (k-1)
    a047917_row n = a047917_tabl !! (n-1)
    a047917_tabl = zipWith (zipWith div) a047916_tabl a002024_tabl
    -- Reinhard Zumkeller, Mar 19 2014
  • Mathematica
    a[n_, k_] := If[ Divisible[n, k], EulerPhi[n/k]*(n/k)^k*k!/n, 0]; Flatten[ Table[ a[n, k], {n, 1, 12}, {k, 1, n}]](* Jean-François Alcover, Feb 17 2012 *)

Extensions

Offset corrected by Reinhard Zumkeller, Mar 19 2014

A242101 Number of conjugacy classes of the symmetric group S_n when conjugating only by even permutations.

Original entry on oeis.org

1, 2, 4, 6, 8, 12, 16, 24, 32, 44, 58, 80, 104, 138, 180, 236, 302, 390, 496, 634, 800, 1010, 1264, 1586, 1970, 2448, 3024, 3734, 4582, 5622, 6862, 8372, 10168, 12336, 14912, 18010, 21672, 26052, 31226, 37384, 44632, 53226, 63318, 75238, 89202, 105630, 124832
Offset: 1

Views

Author

Attila Egri-Nagy, Aug 14 2014

Keywords

Crossrefs

Cf. A242099 (by dihedral group), A000041 (by symmetric group itself), A061417 (by cyclic group).
Cf. A046682.

Programs

  • GAP
    List([1..11], n->Size(OrbitsDomain(AlternatingGroup(IsPermGroup, n), SymmetricGroup(IsPermGroup, n), \^)));

Formula

For n >=2, a(n) = A000041(n) + A000700(n) = 2*A046682(n) [by a formula in A046682]. - Eric M. Schmidt, Aug 23 2014

Extensions

More terms from Eric M. Schmidt, Aug 23 2014
Previous Showing 11-15 of 15 results.