cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A062180 Harmonic mean of digits is 2.

Original entry on oeis.org

2, 22, 136, 144, 163, 222, 316, 361, 414, 441, 613, 631, 1236, 1244, 1263, 1326, 1333, 1362, 1424, 1442, 1623, 1632, 2136, 2144, 2163, 2222, 2316, 2361, 2414, 2441, 2613, 2631, 3126, 3133, 3162, 3216, 3261, 3313, 3331, 3612, 3621, 4124, 4142, 4214, 4241
Offset: 1

Views

Author

Vladeta Jovovic, Jun 12 2001

Keywords

Crossrefs

Programs

  • Maple
    h:= proc(L) local m,x,i,t;
      m:= nops(L)+1;
      x:= m/2 - add(1/t, t=L);
      if x > 0 then
        x:= 1/x;
        if x::posint and x <= 9 then
          return(x + add(L[i]*10^i,i=1..m-1))
      fi fi
    end proc:
    f:= n -> h(map(`+`,convert(n,base,9),1)):
    g:= n -> h([op(map(`+`,convert(n,base,9),1)),1]):
    R:= 2:
    for d from 1 to 4 do
      R:= R, seq(f(i),i=9^(d-1)..9^d-1),seq(g(i),i=9^(d-1)..9^d-1)
    od:
    R; # Robert Israel, Apr 05 2021
  • Mathematica
    Do[ h = IntegerDigits[n]; If[ Sort[h][[1]] != 0 && Length[h]/Apply[Plus, 1/h] == 2, Print[n]], {n, 1, 10^4}]

Extensions

More terms from Henry Bottomley, Jul 25 2001

A316488 Squares whose arithmetic mean of digits is 8 (i.e., the sum of digits is 8 times the number of digits).

Original entry on oeis.org

97969, 88998998929, 97888999968769, 38999699989995889, 79949788888999969, 98987998979757889, 99497897999899876, 498999778899898896, 597998978979699969, 799778987996998689, 896899597989995889, 899984989899599769, 979978999994798769, 989999999787828969
Offset: 1

Views

Author

Jon E. Schoenfield, Jul 04 2018

Keywords

Comments

Each term's number of digits is in A174438 (Numbers that are congruent to {0, 2, 5, 8} mod 9). For every positive term k in A174438, it appears that this sequence contains at least one k-digit term with the exception of k=2, k=8, and k=9. (See A316480.)

Examples

			313^2 = 97969, a 5-digit number whose digit sum is 9+7+9+6+9 = 40 = 8*5, so 97969 is a term.
9949823114^2 = 98998979999888656996, a 20-digit number whose digit sum is 9+8+9+9+8+9+7+9+9+9+9+8+8+8+6+5+6+9+9+6 = 160 = 8*20, so 98998979999888656996 is a term.
		

Crossrefs

Intersection of A000290 and A061425. - Michel Marcus, Jul 06 2018

A062182 Harmonic mean of digits is 4.

Original entry on oeis.org

4, 36, 44, 63, 288, 346, 364, 436, 444, 463, 634, 643, 828, 882, 2488, 2666, 2848, 2884, 3366, 3446, 3464, 3636, 3644, 3663, 4288, 4346, 4364, 4436, 4444, 4463, 4634, 4643, 4828, 4882, 6266, 6336, 6344, 6363, 6434, 6443, 6626, 6633, 6662, 8248, 8284
Offset: 1

Views

Author

Vladeta Jovovic, Jun 12 2001

Keywords

Crossrefs

Programs

  • Maple
    filter:= proc(n) local L;
      L:= convert(n,base,10);
      if has(L,0) then return false fi;
      nops(L)/add(1/i,i=L)=4
    end proc:
    select(filter, [$1..10^4]); # Robert Israel, Aug 20 2018
  • Mathematica
    Do[ h = IntegerDigits[n]; If[ Sort[h][[1]] != 0 && Length[h]/Apply[Plus, 1/h] == 4, Print[n]], {n, 1, 10^5}]
    hm4Q[n_]:=DigitCount[n,10,0]==0&&HarmonicMean[IntegerDigits[n]]==4; Select[Range[9000],hm4Q]  (* Harvey P. Dale, Mar 23 2011 *)

Extensions

More terms from Henry Bottomley, Jul 25 2001

A062183 Numbers such that harmonic mean of digits is 5.

Original entry on oeis.org

5, 55, 555, 5555, 26999, 28888, 29699, 29969, 29996, 33999, 34688, 34868, 34886, 36488, 36666, 36848, 36884, 38468, 38486, 38648, 38684, 38846, 38864, 39399, 39939, 39993, 43688, 43868, 43886, 44488, 44666, 44848, 44884, 46388, 46466
Offset: 1

Views

Author

Vladeta Jovovic, Jun 12 2001

Keywords

Crossrefs

Programs

  • Mathematica
    Do[ h = IntegerDigits[n]; If[ Sort[h][[1]] != 0 && Length[h]/Apply[Plus, 1/h] == 5, Print[n]], {n, 1, 10^6}]
    Select[Range[50000],HarmonicMean[IntegerDigits[#]]==5&] (* Harvey P. Dale, Sep 27 2018 *)

Extensions

More terms from Robert G. Wilson v, Aug 08 2001

A285093 Corresponding values of arithmetic means of digits of numbers from A061383.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 2, 3, 4, 5, 6, 2, 3, 4, 5, 6, 3, 4, 5, 6, 7, 3, 4, 5, 6, 7, 4, 5, 6, 7, 8, 4, 5, 6, 7, 8, 5, 6, 7, 8, 9, 1, 2, 3, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 3, 4, 5, 3, 4, 5, 6, 4, 5, 6
Offset: 0

Views

Author

Jaroslav Krizek, Apr 14 2017

Keywords

Crossrefs

Cf. A061383 (numbers with integer arithmetic mean of digits in base 10).
Sequences of numbers n such that a(n) = k for k = 1 - 9: A061384 (k = 1), A061385 (k = 2), A061386 (k = 3), A061387 (k = 4), A061388 (k = 5), A061423 (k = 6), A061424 (k = 7), A061425 (k = 8), A002283 (k = 9).
Cf. A004426, A004427, A257295 (supersequences).

Programs

  • Magma
    [0] cat [&+Intseq(n) / #Intseq(n): n in [1..100000] | &+Intseq(n) mod #Intseq(n) eq 0];
    
  • PARI
    lista(nn) = {for (n=0, nn, if (n, d = digits(n), d = [0]); if (!( vecsum(d) % #d), print1(vecsum(d)/#d, ", ")););} \\ Michel Marcus, Apr 15 2017

Formula

a(n) = A007953(A061383(n)) / A055642(A061383(n)) for n >= 1.

A061546 Harmonic mean of digits is 7.

Original entry on oeis.org

7, 77, 777, 7777, 77777, 777777, 3999999, 4688999, 4689899, 4689989, 4689998, 4698899, 4698989, 4698998, 4699889, 4699898, 4699988, 4868999, 4869899, 4869989, 4869998, 4886999, 4888888, 4889699, 4889969, 4889996, 4896899
Offset: 1

Views

Author

Vladeta Jovovic, Jun 13 2001

Keywords

Examples

			6666999 is a term since 7/(1/6+1/6+1/6+1/6+1/9+1/9+1/9)=7.
		

Crossrefs

Programs

  • Mathematica
    Do[ h = IntegerDigits[n]; If[ Sort[h][[1]] != 0 && Length[h]/Apply[Plus, 1/h] == 7, Print[n]], {n, 1, 10^6}]

Extensions

More terms from Robert G. Wilson v, Aug 08 2001

A062181 Harmonic mean of digits is 3.

Original entry on oeis.org

3, 26, 33, 62, 236, 244, 263, 326, 333, 362, 424, 442, 623, 632, 1999, 2266, 2336, 2344, 2363, 2434, 2443, 2626, 2633, 2662, 3236, 3244, 3263, 3326, 3333, 3362, 3424, 3442, 3623, 3632, 4234, 4243, 4324, 4342, 4423, 4432, 6226, 6233, 6262, 6323, 6332
Offset: 1

Views

Author

Vladeta Jovovic, Jun 12 2001

Keywords

Crossrefs

Programs

  • Mathematica
    Do[ h = IntegerDigits[n]; If[ Sort[h][[1]] != 0 && Length[h]/Apply[Plus, 1/h] == 3, Print[n]], {n, 1, 10^4}]
  • Python
    from fractions import Fraction
    def hm(n):
      s = str(n)
      return None if '0' in s else len(s)/sum(Fraction(1, int(d)) for d in s)
    def aupto(limit): return [m for m in range(limit+1) if hm(m) == 3]
    print(aupto(6332)) # Michael S. Branicky, Mar 26 2021

Extensions

More terms from Henry Bottomley, Jul 25 2001

A062184 Harmonic mean of digits is 6.

Original entry on oeis.org

6, 66, 488, 666, 848, 884, 3999, 4688, 4868, 4886, 6488, 6666, 6848, 6884, 8468, 8486, 8648, 8684, 8846, 8864, 9399, 9939, 9993, 36999, 38888, 39699, 39969, 39996, 44999, 46688, 46868, 46886, 48668, 48686, 48866, 49499, 49949, 49994, 63999
Offset: 1

Views

Author

Vladeta Jovovic, Jun 12 2001

Keywords

Crossrefs

Programs

  • Mathematica
    Do[ h = IntegerDigits[n]; If[ Sort[h][[1]] != 0 && Length[h]/Apply[Plus, 1/h] == 6, Print[n]], {n, 1, 10^6}]

Extensions

More terms from Robert G. Wilson v, Aug 08 2001
Previous Showing 11-18 of 18 results.