cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A320897 a(n) = Sum_{k=1..n} k^2 * tau(k)^2, where tau is A000005.

Original entry on oeis.org

1, 17, 53, 197, 297, 873, 1069, 2093, 2822, 4422, 4906, 10090, 10766, 13902, 17502, 23902, 25058, 36722, 38166, 52566, 59622, 67366, 69482, 106346, 111971, 122787, 134451, 162675, 166039, 223639, 227483, 264347, 281771, 300267, 319867, 424843, 430319, 453423
Offset: 1

Views

Author

Vaclav Kotesovec, Oct 23 2018

Keywords

Comments

In general, for m>=0, Sum_{k=1..n} k^m * tau(k)^2 ~ n^(m+1) * (log(n))^3 / ((m+1) * Pi^2).

Crossrefs

Programs

  • Mathematica
    Accumulate[Table[k^2*DivisorSigma[0, k]^2, {k, 1, 50}]]
  • PARI
    a(n) = sum(k=1, n, k^2*numdiv(k)^2); \\ Michel Marcus, Oct 23 2018

Formula

a(n) ~ n^3 * (2*Pi^6*(-1 + 12*g - 54*g^2 + 108*g^3 + 36*s1 - 324*g*s1 + 54*s2) - 93312*z1^3 + 2592*Pi^2*z1*(-z1 + 12*g*z1 + 6*z2) - 72*Pi^4*(z1 - 12*g*z1 + 54*g^2*z1 - 36*s1*z1 - 3*z2 + 36*g*z2 + 6*z3) + 6*(Pi^6*(1 - 12*g + 54*g^2 - 36*s1) + 1296*Pi^2*z1^2 - 36*Pi^4*(-z1 + 12*g*z1 + 3*z2))*log(n) + 9*((-1 + 12*g)*Pi^6 - 36*Pi^4*z1)*log(n)^2 + 9*Pi^6*log(n)^3) / (27*Pi^8), where g is the Euler-Mascheroni constant A001620, z1 = Zeta'(2) = A073002, z2 = Zeta''(2) = A201994, z3 = Zeta'''(2) = A201995 and s1, s2 are the Stieltjes constants, see A082633 and A086279.

A356535 a(n) = Sum_{k=1..n} sigma_2(k)^2.

Original entry on oeis.org

1, 26, 126, 567, 1243, 3743, 6243, 13468, 21749, 38649, 53533, 97633, 126533, 189033, 256633, 372914, 457014, 664039, 795083, 1093199, 1343199, 1715299, 1996199, 2718699, 3142500, 3865000, 4537400, 5639900, 6348864, 8038864, 8964308, 10827533, 12315933, 14418433
Offset: 1

Views

Author

Vaclav Kotesovec, Aug 11 2022

Keywords

Comments

Partial sums of A356533.

Crossrefs

Programs

  • Mathematica
    Table[Sum[DivisorSigma[2, k]^2, {k, 1, n}], {n, 1, 40}]
  • PARI
    a(n) = sum(k=1, n, sigma(k, 2)^2); \\ Michel Marcus, Aug 11 2022

Formula

a(n) ~ 189 * zeta(3)^2 * zeta(5) * n^5 / Pi^6.

A356536 a(n) = Sum_{k=1..n} sigma_3(k)^2.

Original entry on oeis.org

1, 82, 866, 6195, 22071, 85575, 203911, 546136, 1119185, 2405141, 4179365, 8357301, 13188505, 22773721, 35220505, 57132266, 81279662, 127696631, 174756231, 259359435, 352134859, 495847003, 643907227, 912211627, 1160305628, 1551633152, 1969426752, 2600039296
Offset: 1

Views

Author

Vaclav Kotesovec, Aug 11 2022

Keywords

Comments

Partial sums of A356534.
In general, for m>0, Sum_{k=1..n} sigma_m(k)^2 ~ zeta(2*m+1) * zeta(m+1)^2 * n^(2*m+1) / ((2*m+1) * zeta(2*m+2)).

Crossrefs

Programs

  • Mathematica
    Table[Sum[DivisorSigma[3, k]^2, {k, 1, n}], {n, 1, 40}]
    Accumulate[DivisorSigma[3,Range[40]]^2] (* This program is much more efficient than the first program above. *) (* Harvey P. Dale, Feb 27 2023 *)
  • PARI
    a(n) = sum(k=1, n, sigma(k, 3)^2); \\ Michel Marcus, Aug 11 2022

Formula

a(n) ~ zeta(7) * n^7 / 6.

A319089 a(n) = tau(n)^3, where tau is A000005.

Original entry on oeis.org

1, 8, 8, 27, 8, 64, 8, 64, 27, 64, 8, 216, 8, 64, 64, 125, 8, 216, 8, 216, 64, 64, 8, 512, 27, 64, 64, 216, 8, 512, 8, 216, 64, 64, 64, 729, 8, 64, 64, 512, 8, 512, 8, 216, 216, 64, 8, 1000, 27, 216, 64, 216, 8, 512, 64, 512, 64, 64, 8, 1728, 8, 64, 216, 343
Offset: 1

Views

Author

Vaclav Kotesovec, Sep 10 2018

Keywords

Crossrefs

Cf. A000005, A006218, A035116, A061502, A318755 (partial sums).

Programs

  • Maple
    with(numtheory): seq(tau(n)^3, n=1..100); # Ridouane Oudra, Mar 07 2023
  • Mathematica
    DivisorSigma[0, Range[100]]^3
  • PARI
    a(n) = numdiv(n)^3; \\ Altug Alkan, Sep 10 2018
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 + 4*X + X^2)/(1 - X)^4)[n], ", ")) \\ Vaclav Kotesovec, Mar 09 2023

Formula

Multiplicative with a(p^e) = (e+1)^3. - Amiram Eldar, Dec 31 2022
a(n) = Sum_{d1|n} Sum_{d2|n} tau(d1*d2). - Ridouane Oudra, Mar 07 2023
From Vaclav Kotesovec, Mar 09 2023: (Start)
Dirichlet g.f.: Product_{p prime} p^(2*s) * (1 + 4*p^s + p^(2*s)) / (p^s - 1)^4.
Dirichlet g.f.: zeta(s)^8 * Product_{p prime} (1 - 9/p^(2*s) + 16/p^(3*s) - 9/p^(4*s) + 1/p^(6*s)), (with a product that converges for s=1). (End)

A268756 Number of triples x, y, r such that r divides x*y, r divides at least one of x or y, and x*y <= n.

Original entry on oeis.org

1, 5, 9, 17, 21, 35, 39, 53, 61, 75, 79, 107, 111, 125, 139, 160, 164, 192, 196, 224, 238, 252, 256, 304, 312, 326, 340, 368, 372, 418, 422, 452, 466, 480, 494, 550, 554, 568, 582, 630, 634, 680, 684, 712, 740, 754, 758, 830, 838, 866, 880, 908, 912, 960, 974
Offset: 1

Views

Author

Michel Marcus, Feb 13 2016

Keywords

Comments

a(n) - a(n - 1) only depends on the prime signature of n. - David A. Corneth, Aug 30 2018

Crossrefs

Programs

  • PARI
    a(n) = {s = 0; for (x=1, n, for (y = 1, n, if (x*y <= n, s += sum(r = 1, x*y, !(x*y % r) && (!(x % r) || !(y % r)));););); s;}
    
  • PARI
    \\ See PARI link \\ David A. Corneth, Aug 30 2018
Previous Showing 11-15 of 15 results.