A061517
a(0) = 0; a(n) is obtained by incrementing each digit of a(n-1) by 4.
Original entry on oeis.org
0, 4, 8, 12, 56, 910, 1354, 5798, 9111312, 13555756, 5799911910, 911131313551354, 1355575757995798, 579991191191113139111312, 9111313135513551355575713555756, 135557575799579957999119115799911910
Offset: 0
-
NestList[FromDigits[Flatten[IntegerDigits/@(IntegerDigits[#]+4)]]&,0,20] (* Harvey P. Dale, Nov 20 2020 *)
More terms from Larry Reeves (larryr(AT)acm.org), May 11 2001
A061520
a(0) = 0; a(n) is obtained by incrementing each digit of a(n-1) by 6.
Original entry on oeis.org
0, 6, 12, 78, 1314, 79710, 13151376, 79711791312, 1315137713157978, 797117913137971113151314, 1315137713157979131513777971179710, 797117913137971113151315797117913131315137713151376
Offset: 0
-
g:= proc(n) op(convert(n+6,base,10)) end proc:
L[0]:= [0]:
for n from 1 to 12 do L[n]:= map(g,L[n-1]) od:
map(t -> add(t[i]*10^(i-1),i=1..nops(t)), [seq(L[i],i=0..12)]): # Robert Israel, Jan 26 2020
-
Nest[Append[#, FromDigits@ Flatten@ IntegerDigits[IntegerDigits@ #[[-1]] + 6]] &, {0}, 11] (* Michael De Vlieger, Jan 26 2020 *)
NestList[FromDigits[Flatten[IntegerDigits/@(IntegerDigits[#]+6)]]&,0,15] (* Harvey P. Dale, Jan 10 2021 *)
More terms from Larry Reeves (larryr(AT)acm.org), May 11 2001
A061514
a(0) = 0; a(n) is obtained by incrementing each digit of a(n-1) by 3.
Original entry on oeis.org
0, 3, 6, 9, 12, 45, 78, 1011, 4344, 7677, 1091010, 43124343, 76457676, 10978109109, 4312101143124312, 7645434476457645, 1097876771097810978, 4312101110910104312101143121011, 76454344431243437645434476454344
Offset: 0
More terms from Larry Reeves (larryr(AT)acm.org), May 11 2001
A061515
a(0) = 1; a(n) is obtained by incrementing each digit of a(n-1) by 3.
Original entry on oeis.org
1, 4, 7, 10, 43, 76, 109, 4312, 7645, 10978, 43121011, 76454344, 109787677, 431210111091010, 7645434443124343, 10978767776457676, 43121011109101010978109109, 76454344431243434312101143124312, 109787677764576767645434476457645, 431210111091010109781091091097876771097810978
Offset: 0
-
from itertools import accumulate, repeat
def f(n, _): return int("".join(str(int(d)+3) for d in str(n)))
def aupton(nn): return list(accumulate(repeat(1, nn+1), f))
print(aupton(19)) # Michael S. Branicky, Mar 19 2022
More terms from Larry Reeves (larryr(AT)acm.org), May 11 2001
A061516
a(0) = 1; a(n) is obtained by incrementing each digit of a(n-1) by 4.
Original entry on oeis.org
1, 5, 9, 13, 57, 911, 1355, 5799, 9111313, 13555757, 5799911911, 911131313551355, 1355575757995799, 579991191191113139111313, 9111313135513551355575713555757, 135557575799579957999119115799911911
Offset: 0
-
a[0]=1;a[n_]:=a[n]=FromDigits[Flatten[IntegerDigits/@(IntegerDigits[a[n-1]]+4)]]; Table[a[n],{n,0,15}] (* Zak Seidov, Mar 09 2006 *)
More terms from Larry Reeves (larryr(AT)acm.org), May 11 2001
A061518
a(0) = 0; a(n) is obtained by incrementing each digit of a(n-1) by 5.
Original entry on oeis.org
0, 5, 10, 65, 1110, 6665, 11111110, 66666665, 1111111111111110, 6666666666666665, 11111111111111111111111111111110, 66666666666666666666666666666665, 1111111111111111111111111111111111111111111111111111111111111110
Offset: 0
-
from itertools import accumulate, repeat
def f(n, _): return int("".join(str(int(d)+5) for d in str(n)))
def aupton(nn): return list(accumulate(repeat(0, nn+1), f))
print(aupton(12)) # Michael S. Branicky, Mar 19 2022
More terms from Larry Reeves (larryr(AT)acm.org), May 11 2001
a(3) and following corrected and formula removed by
Georg Fischer, Mar 19 2022
A061521
a(0) = 1; a(n) is obtained by incrementing each digit of a(n-1) by 6.
Original entry on oeis.org
1, 7, 13, 79, 1315, 79711, 13151377, 79711791313, 1315137713157979, 797117913137971113151315, 1315137713157979131513777971179711, 797117913137971113151315797117913131315137713151377, 131513771315797913151377797117971113151377131579797971179131379711791313
Offset: 0
-
NestList[FromDigits[Flatten[IntegerDigits/@(IntegerDigits[#]+6)]]&,1,15] (* Harvey P. Dale, May 21 2015 *)
More terms from Larry Reeves (larryr(AT)acm.org), May 11 2001
A061748
a(0) = 1; a(n) is obtained by incrementing each digit of a(n-1) by 8.
Original entry on oeis.org
1, 9, 17, 915, 17913, 91517911, 179139151799, 91517911179139151717, 1791391517999151791117913915915, 91517911179139151717179139151799915179111791317913
Offset: 0
-
NestList[FromDigits[Flatten[IntegerDigits/@(IntegerDigits[#]+8)]]&,1,10] (* Harvey P. Dale, Aug 20 2012 *)
More terms from Larry Reeves (larryr(AT)acm.org), May 11 2001
A337016
a(0) = 0. Successive terms are double the previous, then with their digits incremented by 1.
Original entry on oeis.org
0, 1, 3, 7, 25, 61, 233, 577, 2265, 5641, 22393, 55897, 2228105, 5567321, 22245753, 555102617, 2221316345, 55537437101, 222185985313, 5554821081737, 222110753274585, 5553326176510281, 22217763464131673, 555466371039374457, 222110438531898591025
Offset: 0
To calculate a(12), double 55897 to get 111794, then increment the digits by 1 to get 2228105.
To calculate a(13), double 2228105 to get 4456210, then increment the digits by 1 to get 5567321.
-
a:= proc(n) option remember; `if`(n=0, 0, (l-> parse(cat(seq(
l[-i]+1, i=1..nops(l)))))(convert(2*a(n-1), base, 10)))
end:
seq(a(n), n=0..25); # Alois P. Heinz, Dec 12 2020
-
NestList[FromDigits[Flatten@ Map[IntegerDigits, IntegerDigits[2 #] + 1]] &, 0, 24] (* Michael De Vlieger, Dec 11 2020 *)
-
digs(n) = if (n==0, [0], digits(n));
lista(nn) = {a = 0; print1(a, ", "); for (n=1, nn, a = eval(concat(apply(t->Str(t+1), digs(2*a)))); print1(a, ", "););} \\ Michel Marcus, Nov 28 2020
A338767
a(0) = 0; a(n) is obtained by incrementing each digit of a(n-1) by n.
Original entry on oeis.org
0, 1, 3, 6, 10, 65, 1211, 8988, 16171616, 1015101610151015, 11101115111011161110111511101115, 1212121112121216121212111212121712121211121212161212121112121216
Offset: 0
a(5) = {1+5, 0+5} = 65, where {x, y} is the concatenation of x and y.
a(6) = {6+6, 5+6} = 1211.
-
a:= proc(n) option remember; `if`(n=0, 0, (l-> parse(cat(
seq(n+l[-i], i=1..nops(l)))))(convert(a(n-1), base, 10)))
end:
seq(a(n), n=0..12); # Alois P. Heinz, Nov 15 2020
-
Nest[Append[#1, FromDigits@ Apply[Join, Map[IntegerDigits, IntegerDigits[#1[[-1]] ] + #2]]] & @@ {#, Length@ #} &, {0}, 11] (* Michael De Vlieger, Nov 13 2020 *)
Comments