A220853 Denominators of the fraction (30*n+7) * binomial(2*n,n)^2 * 2F1([1/2 - n/2, -n/2], [1], 64)/(-256)^n, where 2F1 is the hypergeometric function.
1, 64, 16384, 1048576, 1073741824, 68719476736, 17592186044416, 1125899906842624, 4611686018427387904, 295147905179352825856, 75557863725914323419136, 4835703278458516698824704, 4951760157141521099596496896, 316912650057057350374175801344
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..415
- Zhi-Wei Sun, List of conjectural series for powers of Pi and other constants, arXiv:1102.5649 [math.CA], 2011-2014; Conjecture I1 page 24.
- Zhi-Wei Sun, On sums related to central binomial and trinomial coefficients, arXiv:1101.0600 [math.NT], 2011-2014.
Programs
-
Maple
A220853 := proc(n) hypergeom([1/2-n/2,-n/2],[1], 64) ; simplify(%) ; (30*n+7)*binomial(2*n,n)^2*%/(-256)^n ; denom(%) ; end proc: # R. J. Mathar, Jan 09 2013
-
Mathematica
Denominator[Table[(30*n + 7)*Binomial[2*n, n]^2*Hypergeometric2F1[(1 - n)/2, -n/2, 1,64]/(-256)^n,{n,0,50}]] (* G. C. Greubel, Feb 20 2017 *)
Formula
Conjectures from Alexander R. Povolotsky, Feb 27 2013: (Start)
a(n) = (A061549(n))^2.
a(n) = 4^A120738(n).
a(n) = 4^(log_2(16^n/((n/2) + (1/2) + (Sum_{k=0..n} (-(-1)^(binomial(n,k)))/2)))). (End)
Extensions
Wrong conjecture removed by R. J. Mathar, Jun 17 2016
Comments