cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A220853 Denominators of the fraction (30*n+7) * binomial(2*n,n)^2 * 2F1([1/2 - n/2, -n/2], [1], 64)/(-256)^n, where 2F1 is the hypergeometric function.

Original entry on oeis.org

1, 64, 16384, 1048576, 1073741824, 68719476736, 17592186044416, 1125899906842624, 4611686018427387904, 295147905179352825856, 75557863725914323419136, 4835703278458516698824704, 4951760157141521099596496896, 316912650057057350374175801344
Offset: 0

Views

Author

Keywords

Comments

From Alexander R. Povolotsky, Jan 25 2013: (Start)
Sum_{n>=0} A220852(n)/a(n) = 24/Pi.
In more direct way, Sum_{k>=0} ((30*k+7) * binomial(2*k,k)^2 * (2F1([1/2 - k/2, -k/2], [1], 64))/(-256)^k) = 24/Pi.
Another version of this identity is: Sum_{k>=0} ((30*k+7) * binomial(2*k,k)^2 * (Sum_{m=0..floor(k/2)} (binomial(k-m,m) * binomial(k,m) * 16^m))/(-256)^k) = 24/Pi. (End)

Crossrefs

Programs

  • Maple
    A220853 := proc(n)
        hypergeom([1/2-n/2,-n/2],[1], 64) ;
        simplify(%) ;
        (30*n+7)*binomial(2*n,n)^2*%/(-256)^n ;
        denom(%) ;
    end proc: # R. J. Mathar, Jan 09 2013
  • Mathematica
    Denominator[Table[(30*n + 7)*Binomial[2*n, n]^2*Hypergeometric2F1[(1 - n)/2, -n/2, 1,64]/(-256)^n,{n,0,50}]] (* G. C. Greubel, Feb 20 2017 *)

Formula

Conjectures from Alexander R. Povolotsky, Feb 27 2013: (Start)
a(n) = (A061549(n))^2.
a(n) = 4^A120738(n).
a(n) = 4^(log_2(16^n/((n/2) + (1/2) + (Sum_{k=0..n} (-(-1)^(binomial(n,k)))/2)))). (End)

Extensions

Wrong conjecture removed by R. J. Mathar, Jun 17 2016

A224270 Absolute values of the numerators of the third column of ( 0 followed by (interleave 0 , A001803(n))/A060818(n) ) and its successive differences.

Original entry on oeis.org

1, 1, 5, 11, 95, 203, 861, 1815, 30459, 63635, 264979, 550069, 4555915, 9412543, 38816525, 79898895, 2627302995, 5392044675, 22104436695, 45256266825, 370241638305, 756514878405, 3088866211275, 6300861570705, 102746354288175, 209286947903319
Offset: 0

Views

Author

Paul Curtz, Apr 02 2013

Keywords

Comments

The array is
0, 0, 1, 0, 3/2, 0, 15/8, 0,...
0, 1, -1, 3/2, -3/2, 15/8, -15/8,...
1, -2, 5/2, -3, 27/8, -15/4,...
-3, 9/2, -11/2, 51/8, -57/8,...
15/2, -10, 95/8, -27/2,...
-35/2, 175/8, -203/8,...
315/8, -189/4,...
-693/8,...
Note A001803 in the first column and a variant of A206771(n) in the second column.
Now consider a(n)/A046161(n) and its differences:
1, 1/2, 5/8, 11/16, 95/128, 203/256, 861/1024,...
-1/2, 1/8, 1/16, 7/128, 13/256, 49/1024,... =b(n)/A046161(n)
5/8, -1/16, -1/128, -1/256, -3/1024,...
-11/16, 7/128, 1/256, 1/1024,...
95/128, -13/256, -3/1024,...
-203/256, 49/1024,...
861/1024,...
This an autosequence of second kind. The first column is the signed sequence.
(Its companion, the corresponding autosequence of first kind, is 0, 1, 1, 9/8, 5/4,... in A206771).
Main diagonal: 1, 1/8, -1/128,... = A002596(n)/A061549(n) ?
b(n) = a(n+1) - A171977*a(n). Also for two successive rows (with shifted A171977).

Examples

			a(n)=numerators of 0+1=1, 0+1/2=1/2, 1/4+3/8=5/8, 3/8+5/16=11/16, 15/32+35/128=95/128,... .
		

Crossrefs

Programs

  • Mathematica
    nmax = 25; t1 = Table[ Numerator[ (2*n+1)*(Binomial[2*n, n]/4^n)] / Denominator[ Binomial[2*n, n]/4^n], {n, 0, Ceiling[nmax/2]}]; t2 = Join[{0}, Table[ If[ OddQ[n], 0, t1[[n/2]] ], {n, 1, nmax+2}] ]; t3 = Table[ Differences[t2, n], {n, 0, nmax}]; t3[[All, 3]] // Numerator // Abs (* Jean-François Alcover, Apr 02 2013 *)

Formula

Numerators of (0, 0 followed by A001803(n)/(4*A046161(n))) + A001790(n)/A046161(n).

Extensions

More terms from Jean-François Alcover, Apr 02 2013

A162445 A sequence related to the Beta function.

Original entry on oeis.org

1, 8, 384, 46080, 2064384, 3715891200, 392398110720, 1428329123020800, 274239191619993600, 1678343852714360832000, 102043306245033138585600, 4714400748520531002654720000, 160144566965128191597871104000
Offset: 0

Views

Author

Johannes W. Meijer, Jul 06 2009

Keywords

Comments

We define F(z) = Beta(1/2-z/2,1/2+z/2)/Beta(1/2,1/2) = 1/sin(Pi*(1+z)/2) with Beta(z,w) the Beta function. See A008956 for a closely related function.
For the Taylor series expansion of F(z) we can write F(z) = sum(b(n)*(Pi*z)^(2*n)/a(n), n=0..infinity) with b(n) = A046976(n) and a(n) the sequence given above.
We can also write F(z) = sum(c(n)*(Pi*z)^(2*n)/d(n), n=0..infinity) with c(n) = A000364(n) and d(n) = A067624(n).
If p(n) is the exponent of the prime factor 2 in a(n) than p(n) = A120738(n) and 2^p(n) = A061549(n) = abs((4*n)!!/A117972(n)).

Crossrefs

Bisection of A050971
Equals 2^(2*n)*A046977(n)

Programs

  • Mathematica
    Denominator[Table[EulerE[2n]/(4n)!!,{n,0,20}]] (* Harvey P. Dale, Jun 23 2013 *)

Formula

a(n) = denom(euler(2*n)/(4*n)!!)
Previous Showing 11-13 of 13 results.