A113857
a(n) = binomial(4+2*n, n) * binomial(9+2*n, 4+n).
Original entry on oeis.org
126, 2772, 48048, 772200, 12033450, 184940756, 2824549728, 43028530272, 655081791000, 9977399586000, 152112583402560, 2322021633001200, 35496198345658050, 543418421128852500, 8331507823355640000, 127919340117331963200, 1966759854303978934200, 30279186980267369086800
Offset: 0
a(0) = C(4+2*n,n)*C(9+2*n,4+n) = C(4,0)*C(9,4) = 1*126 = 126.
a(7) = C(4+2*7,7)*C(9+2*7,4+7) = C(18,7)*C(23,11) = 31824*1352078 = 43028530272.
-
a[n_] := Binomial[4+2*n, n] * Binomial[9+2*n, 4+n]; Array[a, 20, 0] (* Amiram Eldar, Sep 05 2025 *)
-
a(n)={binomial(4+2*n, n) * binomial(9+2*n, 4+n)} \\ Andrew Howroyd, Jan 07 2020
A113895
a(n) = C(2+2*n, n) * C(7+2*n, 2+n).
Original entry on oeis.org
21, 336, 4950, 72072, 1051050, 15402816, 226972746, 3362559200, 50062040028, 748664904000, 11241203533560, 169398104243760, 2561053271692500, 38833447762771200, 590405728218941250, 8998028449224091200, 137437148161776305700, 2103486475191421320000, 32253916565936980114200
Offset: 0
If n=0 then C(2+2*0,0)*C(7+2*0,2+0) = C(2,0)*C(7,2) = 1*21 = 21.
If n=7 then C(2+2*7,7)*C(7+2*7,2+7) = C(16,7)*C(21,9) = 11440*293930 = 3362559200.
If n=10 then C(2+2*10,10)*C(7+2*10,2+10) = C(22,10)*C(27,12) = 646646*17383860 = 11241203533560.
-
seq(binomial(2+2*n,n)*binomial(7+2*n,2+n), n=0..20); # Robert Israel, Dec 16 2018
-
nmax = 10; NN[5, m_, x_] := x^m*(2*m+5)!*Hypergeometric2F1[-m, -m, -2*m-5, (x-1)/x]/((m+5)!*m!); tri = Table[CoefficientList[NN[5, m, x], x], {m, 0, 2*nmax+2}]; Table[tri[[2n+3, n+3]], {n, 0, nmax}] (* Jean-François Alcover, Sep 18 2013 *)
-
a(n) = binomial(2+2*n,n)*binomial(7+2*n,2+n); \\ Michel Marcus, Sep 18 2013
Simpler name and more terms added by
Joerg Arndt, Sep 18 2013
A114059
a(n) = binomial(3+2*n, n) * binomial(8+2*n, 3+n).
Original entry on oeis.org
56, 1050, 16632, 252252, 3775200, 56316546, 840639800, 12575971408, 188663555808, 2838687761000, 42836302222560, 648207031545000, 9834444563299200, 149569451148798450, 2279905857066915000, 34825702701626575200, 532997250488883180000, 8172044956118671828200
Offset: 0
a(0) = C(3+2*0,0)*C(8+2*0,3+0) = C(3,0)*C(8,3) = 1*56 = 56.
a(10) = C(3+2*10,10)*C(8+2*10,3+10) = C(23,10)*C(28,13) = 1144066*37442160 = 42836302222560.
-
a[n_] := Binomial[3+2*n, n] * Binomial[8+2*n, 3+n]; Array[a, 20, 0] (* Amiram Eldar, Sep 05 2025 *)
-
a(n)={binomial(3+2*n, n) * binomial(8+2*n, 3+n)} \\ Andrew Howroyd, Jan 07 2020
Name edited and terms a(11) and beyond from
Andrew Howroyd, Jan 07 2020
A114238
a(n) = binomial(2+2*n, 2+n) * binomial(7+2*n, n).
Original entry on oeis.org
1, 36, 825, 16016, 286650, 4900896, 81477396, 1330243200, 21455160012, 343138081000, 5455289950110, 86359817849760, 1362899694292500, 21460589553110400, 337374701839395000, 5297540558850547200, 83114164698623615700, 1303247055281641470000, 20427480491760087405660
Offset: 0
For n=0 then C(2+2*0,2+0)*C(7+2*0,0+0) = C(2,2)*C(7,0) = 1*1 = 1.
For n=8 then C(2+2*8,2+8)*C(7+2*8,0+8) = C(18,10)*C(23,8) = 43758*490314 = 21455160012.
-
a[n_] := Binomial[2*n+2, 2+n] * Binomial[2*n+7, n]; Array[a, 25, 0] (* Amiram Eldar, Sep 05 2025 *)
-
a(n)={binomial(2+2*n, 2+n) * binomial(7+2*n, 0+n)} \\ Andrew Howroyd, Nov 08 2019
A114253
a(n) = C(5+2*n,5+n)*C(10+2*n,0+n).
Original entry on oeis.org
1, 84, 3276, 92400, 2187900, 46558512, 923410488, 17439488352, 317907339750, 5644249611000, 98209943231400, 1682207622669600, 28457345616827400, 476607460678020000, 7917519856977720000, 130649634333275016960, 2143941655711783421340, 35018537985874435552560
Offset: 0
If n=1 then C(5+2*1,5+1)*C(10+2*1,0+1) = C(7,6)*C(12,1) = 7*12 = 84.
If n=11 then C(5+2*n,5+n)*C(10+2*n,0+n) = C(27,16)*C(32,11) = 13037895*129024480 = 1682207622669600.
-
seq(binomial(5+2*n,5+n)*binomial(10+2*n,n),n=0..30); # Robert Israel, Jan 11 2019
-
a[n_] := Binomial[2*n + 5, n + 5]*Binomial[2*n + 10, n]; Array[a, 20, 0] (* Amiram Eldar, Sep 06 2025 *)
A113888
a(n) = C(2*n+1,n)*C(2*n+6,n+1).
Original entry on oeis.org
6, 84, 1200, 17325, 252252, 3699696, 54609984, 810616950, 12092280200, 181176906768, 2725140250560, 41132585656890, 622787147955000, 9456196695480000, 143946539451475200, 2196309308974461450, 33581927605139911800, 514470608092210770000, 7895695609776494520000
Offset: 0
If n=0 then C(1+2*0,0+0)*C(6+2*0,1+0) = C(1,0)*C(6,1) = 1*6 = 6.
If n=4 then C(1+2*4,0+4)*C(6+2*4,1+4) = C(9,4)*C(14,5) = 126*2002 = 252252.
If n=10 then C(1+2*10,0+10)*C(6+2*10,1+10) = C(21,10)*C(26,11) = 352716*7726160 = 2725140250560.
-
Table[Binomial[2n+1,n]Binomial[2n+6,n+1],{n,0,20}] (* Harvey P. Dale, Jun 14 2011 *)
A114251
a(n) = C(3+2*n,3+n)*C(8+2*n,0+n).
Original entry on oeis.org
1, 50, 1386, 30576, 600600, 11027016, 193993800, 3316739712, 55588369122, 918398981500, 15013703965260, 243495727020000, 3925151119562400, 62976611010020400, 1006711677146430000, 16046173576808179200, 255175067057177767500, 4050491847815341688760
Offset: 0
If n=0 then C(3+2*0,3+0)*C(8+2*0,0+0) = C(3,3)*C(8,0) = 1*1 = 1.
If n=7 then C(3+2*7,3+7)*C(8+2*7,0+7) = C(17,10)*C(22,7) = 19448*170544 = 3316739712.
-
Table[Binomial[3+2n,3+n]Binomial[8+2n,n],{n,0,20}] (* Harvey P. Dale, Jul 26 2019 *)
A114252
a(n) = C(4+2*n,4+n)*C(9+2*n,0+n).
Original entry on oeis.org
1, 66, 2184, 54600, 1178100, 23279256, 434546112, 7801876368, 136246002750, 2331320491500, 39283977292560, 654191853260400, 10794165578796600, 176805993477330000, 2879098129810080000, 46660583690455363200, 753276797952788769660, 12121801610494996922040
Offset: 0
-
Table[Binomial[4+2n,4+n]Binomial[9+2n,n],{n,0,20}] (* Harvey P. Dale, Aug 30 2015 *)
Comments