cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A094221 1/detM(n) where M(n) is the n X n matrix m(i,j)=F(i)/F(i+j-1) and F(i)=i-th Fibonacci number.

Original entry on oeis.org

1, -2, -180, 2808000, 63248290560000, -13040516214928232110080000, -173699422048124050990739961787485511680000, 1013027110717881203216509560866301885575342298295136595148800000
Offset: 1

Views

Author

Benoit Cloitre, May 28 2004

Keywords

Crossrefs

Cf. A062381.

Programs

  • Mathematica
    Table[(-1)^Floor[n/2] * Product[Fibonacci[k]^k,{k,1,n-1}] * Product[Fibonacci[k]^(2*n-k),{k,n,2*n-1}] / Product[Fibonacci[k],{k,1,n}] / Product[Product[Fibonacci[k],{k,1,j-1}],{j,1,n}]^2,{n,1,10}] (* Vaclav Kotesovec, May 01 2015 *)
  • PARI
    a(n)=1/matdet(matrix(n,n,i,j,fibonacci(i)/(fibonacci(i+j-1))))

Formula

a(n) = A062381(n)/A003266(n). - corrected by Vaclav Kotesovec, May 01 2015
a(n) ~ (-1)^floor(n/2) * A253270 * ((1+sqrt(5))/2)^(n*(4*n^2 - 3*n - 1)/6) / (A253267^2 * A062073^(2*n-1)). - Vaclav Kotesovec, May 01 2015

A094592 a(n)=1/det(M(n)) where M(n) is the n X n matrix with element 1/binomial(n+i+j,n).

Original entry on oeis.org

1, 3, 900, 16464000, 19061082810000, 1438322180987553878016, 7234500281404807826660044800000, 2467969483765439710971533630106501120000000
Offset: 0

Views

Author

Benoit Cloitre, Jun 05 2004

Keywords

Crossrefs

Programs

  • PARI
    a(n)=1/matdet(matrix(n,n,i,j,1/binomial(n+i+j,n)))

A129762 Sum of all elements of n X n X n cubic array M[i,j,k] = Fibonacci[i+j+k-2].

Original entry on oeis.org

1, 13, 104, 615, 3149, 14912, 67537, 297945, 1293832, 5564911, 23795465, 101383680, 431003105, 1829784725, 7761645928, 32906509335, 139466630773, 590979780544, 2503927125041, 10608105770625, 44940061502216
Offset: 1

Views

Author

Alexander Adamchuk, May 15 2007, Oct 11 2007

Keywords

Comments

p^3 divides a(p-1) for prime p = {11,19,29,31,41,59,61,71,79,89,...} = A045468 Primes congruent to {1, 4} mod 5; also primes p that divide Fibonacci(p-1). a(n) is prime for n = {2,7,19,...}.
a(n) is prime for n = {2, 7, 19, 47, 175, 179, ...}. The formula a(n) = F(3n+4) - 3F(2n+4) + 3F(n+4) - 3 and its generalization for k-dimensional hypercubes with elements M(i,j,...) = F(i+j+...-k+1) was stated and proved by the user 1istik_figi in private communication at LiveJournal on Oct 10 2007. The k-dimensional formula is a(n) = Sum[(-1)^i*Binomial[k,i]*Fibonacci[(k-i)*n+k+1],{i,0,k}]. Conjecture: if prime p divides F(p-1) then p^k divides a(n) in k-dimensional case.

Crossrefs

Cf. A120297 = Sum of all matrix elements of n X n matrix M[i, j] = Fibonacci[i+j-1]. Cf. A000045, A045468, A001924, A062381.

Programs

  • Magma
    [Fibonacci(3*n+4) - 3*Fibonacci(2*n+4) + 3*Fibonacci(n+4) - 3: n in [1..30]]; // Vincenzo Librandi, Apr 21 2011
  • Mathematica
    Table[ Sum[ Sum[ Sum[ Fibonacci[i+j+k-2], {i,1,n} ], {j,1,n} ], {k,1,n} ], {n,1,30} ]
    Table[ Fibonacci[3n+4] - 3*Fibonacci[2n+4] + 3*Fibonacci[n+4] - 3, {n,1,50} ]
    LinearRecurrence[{9,-26,24,6,-14,1,1},{1,13,104,615,3149,14912,67537},30] (* Harvey P. Dale, Aug 22 2021 *)

Formula

a(n) = Sum[ Sum[ Sum[ Fibonacci[i+j+k-2], {i,1,n} ], {j,1,n} ], {k,1,n} ].
a(n) = Fibonacci[3n+4] - 3*Fibonacci[2n+4] + 3*Fibonacci[n+4] - 3.
a(n) = 9*a(n-1) - 26*a(n-2) + 24*a(n-3) + 6*a(n-4) - 14*a(n-5) + a(n-6) + a(n-7). - Joerg Arndt, Apr 21 2011
G.f.: -x*(x^5 - 7*x^3 + 13*x^2 + 4*x + 1)/((x-1)*(x^2 - 3*x + 1)*(x^2 + x - 1)*(x^2 + 4*x - 1)). - Colin Barker, Aug 10 2012
Previous Showing 11-13 of 13 results.