cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-25 of 25 results.

A275369 Least k such that n! divides sigma(k!) (k > 0).

Original entry on oeis.org

1, 3, 3, 5, 5, 8, 14, 19, 19, 23, 23, 30, 30, 31, 50, 50, 50, 50, 50, 51, 51, 64, 90, 90, 91, 91, 91, 91, 126, 130, 130, 130, 130, 130, 130, 130, 130, 130, 131, 132, 132, 132, 132, 132, 134, 134, 234, 234, 234, 234, 236, 236, 236, 236, 288, 288, 288, 288
Offset: 1

Views

Author

Altug Alkan, Jul 29 2016

Keywords

Examples

			a(3) = 3 because 3! divides sigma(3!) = 12.
		

Crossrefs

Programs

  • Maple
    N:= 500: # to get a(1) .. a(N)
    k:= 1; skf:= 1;
    for n from 1 to N do
      nf:= n!;
      while skf mod nf <> 0 do
        k:= k+1;
        skf:= numtheory:-sigma(k!);
      od:
      A[n]:= k;
    od:
    seq(A[i],i=1..N); # Robert Israel, Aug 09 2016
  • Mathematica
    Table[k = 1; While[! Divisible[DivisorSigma[1, k!], n!], k++]; k, {n, 58}] (* Michael De Vlieger, Aug 08 2016 *)
  • PARI
    a(n) = {my(k = 1); while(sigma(k!) % n! != 0, k++); k; }

A275769 Least k such that n divides sigma(k!) (k > 0).

Original entry on oeis.org

1, 3, 2, 3, 4, 3, 10, 5, 5, 4, 9, 3, 6, 10, 4, 7, 8, 5, 14, 4, 11, 9, 12, 5, 21, 6, 14, 10, 42, 4, 6, 11, 9, 8, 14, 5, 36, 14, 6, 5, 22, 11, 35, 9, 5, 12, 24, 7, 13, 21, 8, 7, 69, 14, 9, 10, 14, 42, 60, 4, 21, 6, 14, 12, 8, 9, 45, 8, 12, 14, 20, 5, 10, 36, 21, 14, 10, 6, 40, 8, 14, 22, 81, 11
Offset: 1

Views

Author

Altug Alkan, Aug 08 2016

Keywords

Examples

			a(5) = 4 because sigma(4!) = 60 is divisible by 5.
		

Crossrefs

Programs

  • Mathematica
    Table[k = 1; While[! Divisible[DivisorSigma[1, k!], n], k++]; k, {n, 84}] (* Michael De Vlieger, Aug 08 2016 *)
    Module[{nn=100,sk},sk=Table[{k,DivisorSigma[1,k!]},{k,nn}];Table[SelectFirst[sk,Mod[#[[2]],n]==0&],{n,nn}]][[;;,1]] (* Harvey P. Dale, Nov 28 2024 *)
  • PARI
    a(n) = {my(k=1); while(sigma(k!) % n != 0, k++); k; }

A294346 E.g.f.: exp( Sum_{n>=1} sigma(n!) * x^n/n! ).

Original entry on oeis.org

1, 1, 4, 22, 154, 1306, 12874, 145954, 1843660, 25840684, 397040064, 6637371896, 119517187984, 2310108276048, 47619441310520, 1042743337601320, 24164137431011184, 590726322945970352, 15184954152657360064, 409428979786326488096, 11550423660014156192096, 340219279585618435264480, 10442779307230643663779424, 333425628200639984852617568, 11055838405832227887079632832
Offset: 0

Views

Author

Paul D. Hanna, Oct 29 2017

Keywords

Comments

Compare e.g.f. to exp( Sum_{n>=1} sigma(n) * x^n/n ) = Product_{n>=1} 1/(1 - x^n).

Examples

			E.g.f.: A(x) = 1 + x + 4*x^2/2! + 22*x^3/3! + 154*x^4/4! + 1306*x^5/5! + 12874*x^6/6! + 145954*x^7/7! + 1843660*x^8/8! + 25840684*x^9/9! + 397040064*x^10/10! + 6637371896*x^11/11! + 119517187984*x^12/12! +...
such that
log(A(x)) = x + sigma(2!)*x^2/2! + sigma(3!)*x^3/3! + sigma(4!)*x^4/4! + sigma(5!)*x^5/5! + sigma(6!)*x^6/6! +...+ sigma(n!)*x^n/n! +...
Explicitly,
log(A(x)) = x + 3*x^2/2! + 12*x^3/3! + 60*x^4/4! + 360*x^5/5! + 2418*x^6/6! + 19344*x^7/7! + 159120*x^8/8! + 1481040*x^9/9! + 15334088*x^10/10! + 184009056*x^11/11! + 2217441408*x^12/12! +...+ A062569(n)*x^n/n! +...
PRODUCT.
A(x) = 1 / ((1-x) * (1-x^2)^(2/2!) * (1-x^3)^(10/3!) * (1-x^4)^(42/4!) * (1-x^5)^(336/5!) * (1-x^6)^(1458/6!) * (1-x^7)^(18624/7!) * (1-x^8)^(108720/8!) * (1-x^9)^(1239120/9!) * (1-x^10)^(9165128/10!) * (1-x^11)^(180380256/11!) * (1-x^12)^(1133700288/12!) *...).
		

Crossrefs

Cf. A062569.

Programs

  • PARI
    {a(n) = n!*polcoeff( exp( sum(m=1, n+1, sigma(m!) * x^m/m!) +x*O(x^n)), n)}
    for(n=0, 30, print1(a(n), ", "))

A167369 sigma(n!,n!).

Original entry on oeis.org

1, 5, 47450, 1333735856351858432985890996140258
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Array[DivisorSigma[ #!,#! ]&,5,1]

A306507 a(n) = gcd(n!^2+1, sigma(n!)), where sigma() denotes the sum of the divisors.

Original entry on oeis.org

1, 1, 1, 1, 1, 13, 1, 17, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 61, 1, 1, 1, 1, 1, 1, 1, 1, 61, 1, 1, 1, 193, 1, 1, 1, 757, 61, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 109, 1, 1, 1, 181, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 113
Offset: 1

Views

Author

Daoudi Rédoane, Feb 20 2019

Keywords

Comments

A sequence that produces primes.
A counterexample is found at n=7880, here the gcd is 380927609 = 15761*24169.
Interesting properties may be found in this sequence, for example many primes are 2n+1.

Crossrefs

Programs

  • Mathematica
    Table[GCD[(n!)^2+1,DivisorSigma[1,n!]],{n,90}] (* Harvey P. Dale, Jun 03 2021 *)
  • PARI
    a(n) = gcd(n!^2+1, sigma(n!)); \\ Michel Marcus, Feb 20 2019

Formula

a(n) = gcd(A020549(n), A062569(n)).

Extensions

More terms from Michel Marcus, Feb 20 2019
Previous Showing 21-25 of 25 results.