cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 41 results. Next

A244911 Table read by antidiagonals: T(n,k) = n*k + T(n-1,k) for n >=1, T(0,k) = 1.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 4, 1, 1, 4, 7, 7, 1, 1, 5, 10, 13, 11, 1, 1, 6, 13, 19, 21, 16, 1, 1, 7, 16, 25, 31, 31, 22, 1, 1, 8, 19, 31, 41, 46, 43, 29, 1, 1, 9, 22, 37, 51, 61, 64, 57, 37, 1, 1, 10, 25, 43, 61, 76, 85, 85, 73, 46, 1, 1, 11, 28, 49, 71, 91, 106, 113, 109, 91
Offset: 0

Views

Author

Kival Ngaokrajang, Jul 07 2014

Keywords

Comments

T(n,k) is the total number of boxes, when we start with 1 center box (n = 0) then expand 1 box on k-arms for each n iteration. See illustration in links.
It seems that column C(k) = centered k-gonal numbers, and row R(n) = A000217(n)*k + 1.
The triangle under the main diagonal is A121722.
Column N (CN) is the Narayana transform (A001263) of (1, N, 0, 0, 0, ...). Example: C2 (1, 3, 7, 13, ...) is the Narayana transform of (1, 2, 0, 0, 0, ...). - Gary W. Adamson, Oct 01 2015

Examples

			Table begins:
       C0  C1  C2  C3  C4  C5
  n/k  0   1   2   3   4   5   ...
R0 0   1   1   1   1   1   1   ...
R1 1   1   2   3   4   5   6   ...
R2 2   1   4   7   10  13  16  ...
R3 3   1   7   13  19  25  31  ...
R4 4   1   11  21  31  41  51  ...
R5 5   1   16  31  46  61  76  ...
R6 6   1   22  43  64  85  106 ...
R7 7   1   29  57  85  113 141 ...
R8 8   1   37  73  109 145 181 ...
R9 9   1   46  91  136 181 226 ...
  ...  ... ... ... ... ... ... ...
C1 = A000124, C2 = A002061, C3 = A005448, C4 = A001844, C5 = A005891, C6 = A003215, C7 = A069099, C8 = A016754, C9 = A060544, C10 = A062786, C11 = A069125, C12  =  A003154.
R1 = A000027, R2 = A016777, R3 = A016921, R4 = A017281, R5 = 15*k + 1, R6 = A215146, R7 = A161714.
		

Crossrefs

Formula

T(n,k) = n*k + T(n-1,k) for n >=1, T(0,k) = 1.

A279830 a(n) = the least integer that is centered polygonal in exactly n ways.

Original entry on oeis.org

4, 7, 37, 31, 91, 181, 211, 421, 631, 1891, 1261, 2521, 6931, 18481, 20791, 13861, 27721, 41581, 83161, 138601, 245701, 235621, 180181, 556921, 360361, 540541, 1670761, 1081081, 1413721, 2702701, 2162161, 6486481, 3063061, 8288281, 13430341, 6846841, 10270261, 6126121
Offset: 1

Views

Author

Daniel Sterman, Dec 20 2016

Keywords

Comments

a(n) has exactly n representations as a centered r-gonal number P(r,m) = 1 + r*m*(m+1)/2, with m > 1, r > 0.
a(n) appears n+1 times in A101321, due to the second column containing every positive integer.
a(n)-1 is the first appearance of n+1 in A007862.

Examples

			a(4)=31, because 31 is a centered triangular number (A005448), a centered pentagonal number (A005891), a centered decagonal number (A062786), and a central polygonal number (A002061). No number less than 31 has 4 representations.
		

Crossrefs

Cf. A007862 (see alternative definition: the number of ways to represent n+1 as a centered polygonal number).
Cf. A063778 (the equivalent for polygonal numbers).
Subset of A275340 (the list of nontrivial centered polygonal numbers).
Subset of A101321 (centered polygonal numbers read by antidiagonals).

Programs

  • Mathematica
    f[n_] := Length@Select[Divisors[2 n - 2], IntegerQ@Sqrt[1 + 4 #] &] - 1;
    Do[If[IntegerQ[A279830[f[i]]], , A279830[f[i]] = i], {i, 10000}];
    A279830 /@ Range[13]
    (* Davin Park, Dec 28 2016 *)

Extensions

Corrected and extended by Davin Park, Dec 27 2016

A330082 a(n) = 5*A064038(n+1).

Original entry on oeis.org

0, 5, 15, 15, 25, 75, 105, 70, 90, 225, 275, 165, 195, 455, 525, 300, 340, 765, 855, 475, 525, 1155, 1265, 690, 750, 1625, 1755, 945, 1015, 2175, 2325, 1240, 1320, 2805, 2975, 1575, 1665, 3515, 3705, 1950, 2050, 4305, 4515, 2365, 2475, 5175, 5405, 2820, 2940
Offset: 0

Views

Author

Paul Curtz, Dec 01 2019

Keywords

Comments

Main column of a pentagonal spiral for A026741:
(25)
49 (15) 31
24 29 (15) 8 16
47 14 7 ( 5) 3 17 33
23 27 13 2 ( 0) 1 7 9 17
45 13 6 3 1 4 19 35
22 25 11 5 9 10 18
43 12 23 11 21 37
21 41 20 39 19
a(n) = 5 * A064038(n+1) from a pentagonal spiral.
Compare to A319127 = 6 * A002620 in the hexagonal spiral:
22 23 23 22 (24)
20 12 13 13 (12) 25
21 10 5 4 ( 6) 14 25
21 11 5 1 ( 0) 7 15 24
20 11 4 1 ( 0) 2 7 15 26
18 10 2 3 3 6 14 27
19 8 9 9 8 16 27
19 18 16 17 17 26
30 28 29 29 28

Crossrefs

Programs

  • Mathematica
    A330082[n_]:=5Numerator[n(n+1)/4];Array[A330082,100,0] (* Paolo Xausa, Dec 04 2023 *)
  • PARI
    concat(0, Vec(5*x*(1 + 4*x^3 + x^6) / ((1 - x)^3*(1 + x^2)^3) + O(x^50))) \\ Colin Barker, Dec 08 2019

Formula

a(n) = A026741(A028895(n)).
From Colin Barker, Dec 08 2019: (Start)
G.f.: 5*x*(1 + 4*x^3 + x^6) / ((1 - x)^3*(1 + x^2)^3).
a(n) = 3*a(n-1) - 6*a(n-2) + 10*a(n-3) - 12*a(n-4) + 12*a(n-5) - 10*a(n-6) + 6*a(n-7) - 3*a(n-8) + a(n-9) for n>8.
a(n) = (-5/16 + (5*i)/16)*(((-3-3*i) + (-i)^n + i^(1+n))*n*(1+n)) where i=sqrt(-1).
(End)

Extensions

More terms from Colin Barker, Dec 22 2019
Name corrected by Paolo Xausa, Dec 04 2023

A332495 a(n-2) = a(n-6) + 5*(1+2*n) with a(0)=0, a(1)=2, a(2)=7, a(3)=15 for n>=4.

Original entry on oeis.org

0, 2, 7, 15, 25, 37, 52, 70, 90, 112, 137, 165, 195, 227, 262, 300, 340, 382, 427, 475, 525, 577, 632, 690, 750, 812, 877, 945, 1015, 1087, 1162, 1240, 1320, 1402, 1487, 1575, 1665, 1757, 1852, 1950, 2050, 2152, 2257
Offset: 0

Views

Author

Paul Curtz, Feb 14 2020

Keywords

Comments

a(-2)=2, a(-1)=0. 4 evens followed by 4 odds.
Last digit is only 0, 2, 5, 7.
The vertical spoke S-N of the pentagonal spiral for A004526.
37
37 25 25
36 24 15 15 26
36 24 14 7 8 16 26
35 23 14 7 2 3 8 16 27
35 23 13 6 2 0 0 3 9 17 27
34 22 13 6 1 1 4 9 17 28
34 22 12 5 5 4 10 18 28
33 21 12 11 11 10 18 29
33 21 20 20 19 19 29
32 32 31 31 30 30
Rank of multiples of 10: 0, 7, 8, 15, 16, ... = A047521. Compare to A154260 in the formula.

Crossrefs

Cf. A004526, A033429, A062786, A168668, A135706, A147874, 2*A147875 (all in the spiral).

Programs

  • Mathematica
    CoefficientList[Series[x (2 + x + 2 x^2)/((1 - x)^3*(1 + x^2)), {x, 0, 42}], x] (* Michael De Vlieger, Feb 14 2020 *)
  • PARI
    concat(0, Vec(x*(2 + x + 2*x^2) / ((1 - x)^3*(1 + x^2)) + O(x^40))) \\ Colin Barker, Feb 14 2020

Formula

a(-1-n) = a(n).
a(2*n) + a(1+2*n) = 2, 22, 62, ... = A273366(n).
Second differences give the sequence of period 4: repeat [3, 3, 2, 2].
From Colin Barker, Feb 14 2020: (Start)
G.f.: x*(2 + x + 2*x^2) / ((1 - x)^3*(1 + x^2)).
a(n) = 3*a(n-1) - 4*a(n-2) + 4*a(n-3) - 3*a(n-4) + a(n-5) for n>4.
(End)
Multiples of 10: 10*(0, 7, 9, 30, 34, ... = A154260).
4*a(n) = A087960(n) +5*n -1 +5*n^2. - R. J. Mathar, Feb 28 2020

A350760 Decimal expansion of Pi/(2*sqrt(5)) * tan(Pi/(2*sqrt(5))).

Original entry on oeis.org

5, 9, 4, 6, 7, 8, 1, 2, 3, 5, 3, 5, 2, 7, 8, 5, 1, 9, 1, 6, 8, 1, 1, 4, 2, 6, 9, 7, 6, 0, 5, 5, 4, 9, 3, 7, 6, 0, 3, 6, 3, 9, 4, 6, 9, 6, 1, 0, 2, 4, 2, 4, 3, 7, 9, 0, 5, 1, 1, 2, 5, 6, 8, 9, 5, 7, 9, 4, 5, 2, 5, 6, 3, 2, 6, 6, 1, 9, 0, 1, 5, 8, 8, 8, 4, 5, 2, 7, 3, 8, 9, 2, 6, 1, 2, 6, 0, 2, 5, 5, 2, 4, 3, 1, 0
Offset: 0

Views

Author

Amiram Eldar, Jan 14 2022

Keywords

Examples

			0.59467812353527851916811426976055493760363946961024...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[(Pi/(2*Sqrt[5]))*Tan[Pi/(2*Sqrt[5])], 10, 100][[1]]

Formula

Equals Sum_{n>=1} zeta(2*n)*Fibonacci(2*n)/5^n (Frontczak, 2020).
Equals -1 + Sum_{n>=1} zeta(2*n)*Lucas(2*n)/5^n (Frontczak, 2020).
Equals Sum_{n>=0} 1/A273366(n).

A368426 Centered 10-gonal numbers which are sphenic numbers.

Original entry on oeis.org

20801, 22781, 37411, 47531, 55651, 75031, 80011, 100111, 120901, 133661, 161101, 177661, 191101, 199001, 201001, 230051, 236531, 240901, 245311, 263351, 279661, 289201, 313751, 323851, 326401, 368561, 376751, 436601, 439561, 445511, 472781, 475861, 488281, 507211, 539561
Offset: 1

Views

Author

Massimo Kofler, Dec 24 2023

Keywords

Examples

			A062786(65) = 20801 = 5 * 65 * (65-1) + 1 = 11 * 31 * 61.
A062786(68) = 22781 = 5 * 68 * (68-1) + 1 = 11 * 19 * 109.
		

Crossrefs

Intersection of A007304 and A062786.

Programs

  • Maple
    isc10:= proc(n) issqr(20*n+5) end proc:
    P:= select(isprime, [seq(seq(10*i+j,j=[-1,1]),i=1..1000)]): nP:= nops(P):
    M:= P[1]*P[2]*P[-1]:
    A:= NULL:
    for i from 1 to nP-2 while P[i]^3 < M do
      for j from i+1 to nP-1 while P[i]*P[j]^2 < M do
        for k from j+1 to nP do
          q:= P[i]*P[j]*P[k];
          if q > M then break fi;
          if isc10(q) then A:= A,q fi
    od od od:
    sort([A]); # Robert Israel, Dec 24 2023
  • Mathematica
    Select[Table[5*n*(n+1) + 1, {n, 1, 330}], FactorInteger[#][[;; , 2]] == {1, 1, 1} &] (* Amiram Eldar, Dec 24 2023 *)

A386485 a(0) = 1; thereafter a(n) = 5*n^2 - 5*n + 2.

Original entry on oeis.org

1, 2, 12, 32, 62, 102, 152, 212, 282, 362, 452, 552, 662, 782, 912, 1052, 1202, 1362, 1532, 1712, 1902, 2102, 2312, 2532, 2762, 3002, 3252, 3512, 3782, 4062, 4352, 4652, 4962, 5282, 5612, 5952, 6302, 6662, 7032, 7412, 7802, 8202, 8612, 9032, 9462, 9902, 10352, 10812, 11282, 11762, 12252, 12752, 13262, 13782, 14312
Offset: 0

Views

Author

N. J. A. Sloane, Aug 18 2025

Keywords

Comments

Maximum number of regions that can be formed in the plane by drawing n regular pentagons (of any size). Differs from A062786 and A124080 by a small constant shift, but is included here because of its geometrical applications.

Crossrefs

Programs

  • Mathematica
    A386485[n_] := If[n == 0, 1, 5*n*(n - 1) + 2]; Array[A386485, 60, 0] (* or *)
    LinearRecurrence[{3, -3, 1}, {1, 2, 12, 32}, 60] (* Paolo Xausa, Aug 18 2025 *)

Formula

G.f.: -(x^3+9*x^2-x+1)/(x-1)^3.
From Elmo R. Oliveira, Sep 04 2025: (Start)
E.g.f.: exp(x)*(2 + 5*x^2) - 1.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). (End)

A062788 Squares of the form 5n*(n-1)+1.

Original entry on oeis.org

1, 361, 116281, 37442161, 12056259601, 3882078149401, 1250017107847561, 402501626648765281, 129604273763794572961, 41732173650315203728201, 13437630311127731805907801, 4326875228009479326298583761, 1393240385788741215336338063281
Offset: 1

Views

Author

Jason Earls, Jul 19 2001

Keywords

Crossrefs

Bisection of A049683.
Cf. A062786.

Programs

  • PARI
    for(n=1,10^8,x=(5*n*(n-1)+1); if(issquare(x),print(x)))

Formula

a(n) = A049683(2*n-1) = (1/16) * (Lucas(12*n-6) - 2). - Joerg Arndt, Apr 09 2023
From Chai Wah Wu, Apr 17 2024: (Start)
a(n) = 323*a(n-1) - 323*a(n-2) + a(n-3) for n > 3.
G.f.: x*(-x^2 - 38*x - 1)/((x - 1)*(x^2 - 322*x + 1)). (End)

Extensions

More terms from Sean A. Irvine, Apr 08 2023

A109119 a(n) = 2(5n^2 + 5n + 1)^3.

Original entry on oeis.org

2, 2662, 59582, 453962, 2060602, 6885902, 18787862, 44376082, 94091762, 183467702, 334568302, 577609562, 952759082, 1512116062, 2321871302, 3464647202, 5042017762, 7177208582, 10017976862, 13739671402, 18548472602
Offset: 0

Views

Author

Emeric Deutsch, Jun 19 2005

Keywords

Comments

Kekulé numbers for certain benzenoids.

References

  • S. J. Cyvin and I. Gutman, KekulĂ© structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (p. 310).

Programs

  • Maple
    a:=n->2*(5*n^2+5*n+1)^3: seq(a(n),n=0..28);

Formula

G.f.: 2(1 + 1324z + 20495z^2 + 46360z^3 + 20495z^4 + 1324z^5 + z^6)/(1-z)^7.
a(n) = 2*A062786(n)^3. - R. J. Mathar, Jul 22 2022

A298760 Numbers k such that there is a record number of consecutive prime centered k-gonal numbers after 1.

Original entry on oeis.org

1, 2, 6, 10, 46, 102, 7186, 6382932
Offset: 1

Views

Author

Amiram Eldar, Jan 26 2018

Keywords

Comments

The number of consecutive primes is 1, 3, 4, 7, 8, 9, 10, 11.

Examples

			The first 8 centered 10-gonal numbers (A062786) are 1, 11, 31, 61, 101, 151, 211, 281, and all of them except for 1 are primes (A090562). The previous record is 4 primes, for centered hexagonal numbers 7, 19, 37, 61 (A003215), therefore 6 and 10 are in the sequence.
From _Michel Marcus_, Feb 12 2018: (Start)
  Number of primes after the 1
1: 1  2  4  7  11  16 ...  : 1   <- record
2: 1  3  7 13  21  31 ...  : 3   <- record
3: 1  4 10 19  31  46 ...  : 0
4: 1  5 13 25  41  61 ...  : 2
5: 1  6 16 31  51  76 ...  : 0
6: 1  7 19 37  61  91 ...  : 4   <- record
....
(End)
		

Crossrefs

Programs

  • Mathematica
    f[n_, k_] := k*n (n - 1)/2 + 1; a[k_] := Module[{n = 2}, While[PrimeQ[f[n, k]], n++]; n - 2]; am = 0; seq={}; Do[a1 = a[n]; If[a1 > am, AppendTo[seq, n]; am = a1], {n,1,10^7}]; seq
Previous Showing 31-40 of 41 results. Next