cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 43 results. Next

A004605 Expansion of Pi in base 6.

Original entry on oeis.org

3, 0, 5, 0, 3, 3, 0, 0, 5, 1, 4, 1, 5, 1, 2, 4, 1, 0, 5, 2, 3, 4, 4, 1, 4, 0, 5, 3, 1, 2, 5, 3, 2, 1, 1, 0, 2, 3, 0, 1, 2, 1, 4, 4, 4, 2, 0, 0, 4, 1, 1, 5, 2, 5, 2, 5, 5, 3, 3, 1, 4, 2, 0, 3, 3, 3, 1, 3, 1, 1, 3, 5, 5, 3, 5, 1, 3, 1, 2, 3, 3, 4, 5, 5, 3, 3, 4, 1, 0, 0, 1, 5, 1, 5, 4, 3, 4, 4, 4, 0, 1, 2, 3, 4, 3
Offset: 1

Views

Author

Keywords

Examples

			3.05033005141512410523441405312532110230...
		

Crossrefs

Pi in base b: A004601 (b=2), A004602 (b=3), A004603 (b=4), A004604 (b=5), this sequence (b=6), A004606 (b=7), A006941 (b=8), A004608 (b=9), A000796 (b=10), A068436 (b=11), A068437 (b=12), A068438 (b=13), A068439 (b=14), A068440 (b=15), A062964 (b=16), A060707 (b=60).
Cf. A007514.

Programs

  • Mathematica
    RealDigits[Pi, 6, 105][[1]]
    Table[ResourceFunction["NthDigit"][Pi, n, 6], {n, 1, 105}] (* Joan Ludevid ,Aug 17 2022;easy to compute a(10000000)=0 with this function;requires Mathematica 12.0+ *)

A004604 Expansion of Pi in base 5.

Original entry on oeis.org

3, 0, 3, 2, 3, 2, 2, 1, 4, 3, 0, 3, 3, 4, 3, 2, 4, 1, 1, 2, 4, 1, 2, 2, 4, 0, 4, 1, 4, 0, 2, 3, 1, 4, 2, 1, 1, 1, 4, 3, 0, 2, 0, 3, 1, 0, 0, 2, 2, 0, 0, 3, 4, 4, 4, 1, 3, 2, 2, 1, 1, 0, 1, 0, 4, 0, 3, 3, 2, 1, 3, 4, 4, 0, 0, 4, 3, 2, 4, 4, 4, 0, 1, 4, 4, 1, 0, 4, 2, 3, 3, 4, 1, 3, 3, 0, 1, 1, 3, 2
Offset: 1

Views

Author

Keywords

Examples

			3.03232214303343241124122404140231421114...
		

Crossrefs

Pi in base b: A004601 (b=2), A004602 (b=3), A004603 (b=4), this sequence (b=5), A004605 (b=6), A004606 (b=7), A006941 (b=8), A004608 (b=9), A000796 (b=10), A068436 (b=11), A068437 (b=12), A068438 (b=13), A068439 (b=14), A068440 (b=15), A062964 (b=16), A060707 (b=60).
Cf. A007514.

Programs

  • Mathematica
    RealDigits[Pi, 5, 100][[1]]
    Table[ResourceFunction["NthDigit"][Pi, n, 5], {n, 1, 100}] (* Joan Ludevid, Aug 17 2022;easy to compute a(10000000)=0 with this function;requires Mathematica 12.0+ *)

A004606 Expansion of Pi in base 7.

Original entry on oeis.org

3, 0, 6, 6, 3, 6, 5, 1, 4, 3, 2, 0, 3, 6, 1, 3, 4, 1, 1, 0, 2, 6, 3, 4, 0, 2, 2, 4, 4, 6, 5, 2, 2, 2, 6, 6, 4, 3, 5, 2, 0, 6, 5, 0, 2, 4, 0, 1, 5, 5, 4, 4, 3, 2, 1, 5, 4, 2, 6, 4, 3, 1, 0, 2, 5, 1, 6, 1, 1, 5, 4, 5, 6, 5, 2, 2, 0, 0, 0, 2, 6, 2, 2, 4, 3, 6, 1, 0, 3, 3, 0, 1, 4, 4, 3, 2, 3, 3, 6, 3, 1, 0, 1, 1, 3
Offset: 1

Views

Author

Keywords

Examples

			3.06636514320361341102634022446522266435...
		

Crossrefs

Pi in base b: A004601 (b=2), A004602 (b=3), A004603 (b=4), A004604 (b=5), A004605 (b=6), this sequence (b=7), A006941 (b=8), A004608 (b=9), A000796 (b=10), A068436 (b=11), A068437 (b=12), A068438 (b=13), A068439 (b=14), A068440 (b=15), A062964 (b=16), A060707 (b=60).
Cf. A007514.

Programs

  • Mathematica
    RealDigits[Pi, 7, 105][[1]]
    Table[ResourceFunction["NthDigit"][Pi, n, 7], {n, 1, 105}] (* Joan Ludevid, Sep 13 2022; easy to compute a(10000000)=5 with this function;requires Mathematica 12.0+ *)

A006941 Expansion of Pi in base 8.

Original entry on oeis.org

3, 1, 1, 0, 3, 7, 5, 5, 2, 4, 2, 1, 0, 2, 6, 4, 3, 0, 2, 1, 5, 1, 4, 2, 3, 0, 6, 3, 0, 5, 0, 5, 6, 0, 0, 6, 7, 0, 1, 6, 3, 2, 1, 1, 2, 2, 0, 1, 1, 1, 6, 0, 2, 1, 0, 5, 1, 4, 7, 6, 3, 0, 7, 2, 0, 0, 2, 0, 2, 7, 3, 7, 2, 4, 6, 1, 6, 6, 1, 1, 6, 3, 3, 1, 0, 4, 5, 0, 5, 1, 2, 0, 2, 0, 7, 4, 6, 1, 6, 1, 5, 0, 0, 2, 3
Offset: 1

Views

Author

Keywords

Examples

			3.1103755242102643021514230630505600670...
		

References

  • D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, Vol. 1, p. 614.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Pi in base b: A004601 (b=2), A004602 (b=3), A004603 (b=4), A004604 (b=5), A004605 (b=6), A004606 (b=7), this sequence (b=8), A004608 (b=9), A000796 (b=10), A068436 (b=11), A068437 (b=12), A068438 (b=13), A068439 (b=14), A068440 (b=15), A062964 (b=16), A060707 (b=60).
Cf. A007514.

Programs

  • Maple
    convert(evalf(Pi), octal, 120);  # Alois P. Heinz, Dec 16 2018
  • Mathematica
    RealDigits[ N[ Pi, 105], 8] [[1]]
    Table[ResourceFunction["NthDigit"][Pi, n, 8], {n, 1, 105}] (* Joan Ludevid, Sep 13 2022; easy to compute a(10000000)=1 with this function; requires Mathematica 12.0+ *)

Formula

a(n) = 4*A004601(3n) + 2*A004601(3n+1) + 1*A004601(3n+2). - Jason Kimberley, Nov 06 2012

Extensions

More terms from Michel ten Voorde, Apr 14 2001

A068438 Expansion of Pi in base 13.

Original entry on oeis.org

3, 1, 10, 12, 1, 0, 4, 9, 0, 5, 2, 10, 2, 12, 7, 7, 3, 6, 9, 12, 0, 11, 11, 8, 9, 12, 12, 9, 8, 8, 3, 2, 7, 8, 2, 9, 8, 3, 5, 8, 11, 3, 7, 0, 1, 6, 0, 3, 0, 6, 1, 3, 3, 12, 10, 5, 10, 12, 11, 10, 5, 7, 6, 1, 4, 11, 6, 5, 11, 4, 1, 0, 0, 2, 0, 12, 2, 2, 11, 4, 12, 7, 1, 4, 5, 7, 10, 9, 5, 5, 10, 5
Offset: 1

Views

Author

Benoit Cloitre, Mar 09 2002

Keywords

Examples

			3.1ac1049052a2c77369c0aa89cc988327829835...
		

Crossrefs

Pi in base b: A004601 (b=2), A004602 (b=3), A004603 (b=4), A004604 (b=5), A004605 (b=6), A004606 (b=7), A006941 (b=8), A004608 (b=9), A000796 (b=10), A068436 (b=11), A068437 (b=12), this sequence (b=13), A068439 (b=14), A068440 (b=15), A062964 (b=16), A060707 (b=60).
Cf. A007514.

Programs

  • Mathematica
    RealDigits[Pi, 13, 111][[1]] (* slightly modified by Robert G. Wilson v, Dec 13 2017 *)
    Table[ResourceFunction["NthDigit"][Pi, n, 13], {n, 1, 111}] (* Joan Ludevid, Oct 11 2022; easy to compute a(10000000)=1 with this function; requires Mathematica 12.0+ *)

A068439 Expansion of Pi in base 14.

Original entry on oeis.org

3, 1, 13, 10, 7, 5, 12, 13, 10, 8, 1, 3, 7, 5, 4, 2, 7, 10, 4, 0, 10, 11, 12, 11, 1, 11, 13, 4, 7, 5, 4, 9, 12, 8, 9, 11, 12, 11, 6, 8, 6, 1, 13, 3, 3, 2, 7, 12, 7, 4, 0, 12, 10, 11, 8, 0, 9, 10, 5, 2, 13, 0, 13, 13, 5, 1, 7, 1, 8, 7, 4, 5, 0, 4, 10, 5, 4, 8, 1, 12, 12, 9, 1, 5, 4, 9, 0, 11, 11, 5
Offset: 1

Views

Author

Benoit Cloitre, Mar 09 2002

Keywords

Examples

			3.1da75cda81375427a40abcb1bd47549c89bcb6...
		

Crossrefs

Pi in base b: A004601 (b=2), A004602 (b=3), A004603 (b=4), A004604 (b=5), A004605 (b=6), A004606 (b=7), A006941 (b=8), A004608 (b=9), A000796 (b=10), A068436 (b=11), A068437 (b=12), A068438 (b=13), this sequence (b=14), A068440 (b=15), A062964 (b=16), A060707 (b=60).

Programs

  • Mathematica
    RealDigits[Pi, 14, 115][[1]]

A099333 Frequency of the hexadecimal 0 in the first 10^n hexadecimal digits of Pi.

Original entry on oeis.org

0, 9, 59, 634, 6296, 62522, 624597, 6250690, 62501979, 625011206, 6249979329, 62499881108
Offset: 1

Views

Author

Robert G. Wilson v, Oct 12 2004

Keywords

Crossrefs

Programs

  • Mathematica
    $MaxPrecision = 1100000; ph = Drop[ RealDigits[Pi, 16, 5*10^5] [[1]], 1]; Table[ Count[ Take[ph, 10^n], 0], {n, 5}]

A099334 Frequency of the hexadecimal 1 in the first 10^n hexadecimal digits of Pi.

Original entry on oeis.org

0, 5, 68, 627, 6325, 62385, 624342, 6246592, 62498560, 624994420, 6249991124, 62500212206
Offset: 1

Views

Author

Robert G. Wilson v, Oct 12 2004

Keywords

Crossrefs

Programs

  • Mathematica
    $MaxPrecision = 1100000; ph = Drop[ RealDigits[Pi, 16, 5*10^5] [[1]], 1]; Table[ Count[ Take[ph, 10^n], 1], {n, 5}]

A099335 Frequency of the hexadecimal 2 in the first 10^n hexadecimal digits of Pi.

Original entry on oeis.org

1, 8, 62, 642, 6355, 62644, 625896, 6255492, 62508519, 624984447, 6249917131, 62499924780
Offset: 1

Views

Author

Robert G. Wilson v, Oct 12 2004

Keywords

Crossrefs

Programs

  • Mathematica
    $MaxPrecision = 1100000; ph = Drop[ RealDigits[Pi, 16, 5*10^5] [[1]], 1]; Table[ Count[ Take[ph, 10^n], 2], {n, 5}]

A099336 Frequency of the hexadecimal 3 in the first 10^n hexadecimal digits of Pi.

Original entry on oeis.org

1, 11, 69, 630, 6283, 62432, 623853, 6250592, 62514233, 624983935, 6250077541, 62500188844
Offset: 1

Views

Author

Robert G. Wilson v, Oct 12 2004

Keywords

Crossrefs

Programs

  • Mathematica
    $MaxPrecision = 1100000; ph = Drop[ RealDigits[Pi, 16, 5*10^5] [[1]], 1]; Table[ Count[ Take[ph, 10^n], 3], {n, 5}]
Previous Showing 11-20 of 43 results. Next