A181539
Smallest number m > 1 such that m^2 == 1 (mod 10^n).
Original entry on oeis.org
9, 49, 249, 1249, 18751, 218751, 781249, 24218751, 74218751, 1425781249, 13574218751, 163574218751, 163574218751, 19836425781249, 19836425781249, 2480163574218751, 12519836425781249, 12519836425781249, 487480163574218751, 15487480163574218751, 215487480163574218751, 215487480163574218751
Offset: 1
Kevin Batista (kevin762401(AT)yahoo.com), Oct 29 2010
1249^2 = 1560001 == 1 (mod 10^4), and there is no smaller m > 1 such that m^2 == 1 (mod 10^4). Hence a(4) = 1249.
Cf.
A224473,
A224474 (approximation of the two nontrivial 10-adic square roots of 1 up to powers of 10).
-
install(Zn_quad_roots, GGG);
a181539(n) = vecsort(Zn_quad_roots(10^n,0,-1)[2])[2]; \\ Max Alekseyev, Oct 13 2024
a(2) through a(4), a(7) through a(11) corrected, comment added, example replaced by
Klaus Brockhaus, Nov 01 2010
Definition to avoid the constant sequence a(n)=1 constrained by
R. J. Mathar, Nov 18 2010
a(1) corrected, terms a(13) onward added by
Max Alekseyev, Dec 10 2012
A379243
a(n) = (10^(n + 1) + 10^(n - min{v_2(n), v_5(n)}) + 1)^n, where v_p(n) indicates the p-adic valuation of n.
Original entry on oeis.org
111, 1212201, 1331363033001, 146415324072600440001, 1610517320513310012100005500001, 1771561966306219615026620001815000066000001, 194871722400927338207105124350046585000254100000770000001, 2143588825589736849603708090188560102487000074536000033880000008800000001
Offset: 1
a(3) = (10^4 + 10^3 + 1)^3 = 11001^3 = 1331363033001 is a perfect cube whose constant congruence speed is 3.
- Marco Ripà and Luca Onnis, Number of stable digits of any integer tetration, Notes on Number Theory and Discrete Mathematics, 2022, 28(3), 441—457.
- Marco Ripà, On the relation between perfect powers and tetration frozen digits, Journal of AppliedMath, 2024, 2(5), 1771.
- Wikipedia, Tetration.
-
pAdicValuation[n_, p_] := Module[{v = 0, k = n}, While[Mod[k, p] == 0 && k > 0,k = k/p;v++;];v];
a[n_] := Module[{v2, v5, minVal}, v2 = pAdicValuation[n, 2]; v5 = pAdicValuation[n, 5];
minVal = Min[v2, v5];(10^(n + 1) + 10^(n - minVal) + 1)^n]; sequence = Table[a[n], {n, 1, 20}]; sequence
A381460
Smallest n-th perfect power greater than 1 satisfying A373387(a(n)) = n.
Original entry on oeis.org
2, 49, 15625, 625, 7737809375, 735091890625, 1253790880222890625, 6634204312890625, 47312447868976594992787109375, 72624607478879073313928212890625, 471781339858152691906169456697218212890625, 1344888824246298437178134918212890625
Offset: 1
a(3) = 15625 since 15625 = 25^3 and 15625 is the smallest perfect cube whose constant congruence speed equals 3.
- Marco Ripà, The congruence speed formula, Notes on Number Theory and Discrete Mathematics, 2021, 27(4), 43—61.
- Marco Ripà, Twelve Python Programs to Help Readers Test Peculiar Properties of Integer Tetration, ResearchGate, 2024.
- Marco Ripà and Luca Onnis, Number of stable digits of any integer tetration, Notes on Number Theory and Discrete Mathematics, 2022, 28(3), 441—457.
- Marco Ripà, On the relation between perfect powers and tetration frozen digits, Journal of AppliedMath, 2024, 2(5), 1771.
- Math Overflow, Closed form for the general term of 2, 49, 15625, 625, ....
- Wikipedia, Tetration.
Cf.
A018247,
A018248,
A063006,
A091661,
A091663,
A091664,
A120817,
A120818,
A290372,
A290373,
A290374,
A290375,
A317905,
A373387,
A379243.
A339313
Smallest prime numbers characterized by a convergence speed of n, assuming a(1) = 2 (since 2^2 <> 2^2^2 (mod 10) and 2^2^2 == 2^2^2^2 (mod 10)).
Original entry on oeis.org
2, 5, 193, 1249, 22943, 2218751, 4218751, 74218751, 574218751, 30000000001, 281907922943, 581907922943, 6581907922943, 123418092077057, 480163574218751, 19523418092077057, 40476581907922943, 2152996418333704193, 23640476581907922943, 3640476581907922943
Offset: 1
For n = 3, a(3) = 193, since 193 is the smallest prime number which is characterized by a convergence speed of 3.
- Marco Ripà, On the constant congruence speed of tetration, Notes on Number Theory and Discrete Mathematics, 2020, 26(3), 245-260.
- Marco Ripà, The congruence speed formula, Notes on Number Theory and Discrete Mathematics, 2021, 27(4), 43-61.
A378421
Positive integers in A376446 sorted according to their appearance in that sequence.
Original entry on oeis.org
8, 64, 2486, 5, 4268, 8426, 2, 4, 4862, 46, 82, 6248, 6842, 8624, 2684, 28, 6, 9, 7139, 3179, 19, 1397, 1793, 91, 3971, 7931, 9713, 9317
Offset: 2
a(2) = 64 since A376446(2) = 64 (which is different from A376446(1) = 8).
- Marco Ripà, Graham's number stable digits: an exact solution, arXiv:2411.00015 [math.GM], 2024.
- Marco Ripà, Twelve Python Programs to Help Readers Test Peculiar Properties of Integer Tetration, ResearchGate, 2024. See pp. 9, 14, 27.
- Wikipedia, Graham's Number.
- Wikipedia, Tetration.
Cf.
A000007,
A018247,
A018248,
A063006,
A091661,
A091663,
A091664,
A120817,
A120818,
A290372,
A290373,
A290374,
A290375.
Comments