cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-23 of 23 results.

A329725 a(1)=0, a(n) = n - (product of nonzero digits of n) - a(n-1).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 17, 2, 16, 1, 15, 0, 14, -1, 13, -2, 29, -1, 27, -3, 25, -5, 23, -7, 21, -9, 45, -8, 42, -11, 39, -14, 36, -17, 33, -20, 65, -19, 61, -23, 57, -27, 53, -31, 49, -35, 89, -34, 84, -39, 79, -44, 74, -49, 69, -54, 117
Offset: 1

Views

Author

Joshua Oliver, Nov 19 2019

Keywords

Comments

a(10n+1)-a(10n-1)=1 for all positive integer n (conjectured).

Examples

			a(22) = 22 - 2*2 - 2 = 16.
		

Crossrefs

Programs

  • Maple
    R:= ListTools:-PartialSums(map(n -> (-1)^n*(n - convert(subs(0=NULL,convert(n,base,10)),`*`)), [$1..100])):
    seq((-1)^n*R[n],n=1..100); # Robert Israel, Nov 20 2019
  • Mathematica
    Nest[Append[#1, #2 - Last[#1] - Times @@ DeleteCases[IntegerDigits[#2], 0]] & @@ {#, Length@ # + 1} &, {0}, 69] (* Michael De Vlieger, Nov 19 2019 *)
  • PARI
    for (n=1, 70, print1 (v=if (n==1, 0, n - vecprod(select(sign, digits(n))) - v)", ")) \\ Rémy Sigrist, Nov 28 2019

Formula

a(n) = Sum_{k=2..n} (-1)^(n-k)*A063543(k). - Robert Israel, Nov 20 2019

A334534 Numbers k such that (k-p)*(k+p) contains k as a substring, where p > 0 and p = A007954(k) is the product of digits of k.

Original entry on oeis.org

25, 28, 128, 225, 293, 678, 725, 742, 749, 4225, 4421, 6225, 8926, 72225, 617371, 1985525, 3679518, 4381824, 6816771, 8572645, 9721317, 43872768, 54639413, 758873243, 5895396725, 7796276839, 8881527332, 9458237492, 9594769255, 9949621217, 25214163187, 31987487294
Offset: 1

Views

Author

Scott R. Shannon, May 05 2020

Keywords

Examples

			25 is a term as p = 2*5 = 10 and (25-10)*(25+10) = 525 which contains '25' as a substring.
8926 is a term as p = 8*9*2*6 = 864 and (8926-864)*(8926+864) = 78926980 which contains '8926' as a substring.
		

Crossrefs

Programs

  • PARI
    isokp(dx, d) = {if (!#setintersect(Set(dx), Set(d)), return (0)); for (i=1, #dx - #d + 1, if (vector(#d, k, dx[k+i-1]) == d, return(1)););}
    isokd(x, d, n) = {if (x==n, return (1)); my(dx = digits(x)); if (#dx < #d, return (0)); isokp(dx, d);}
    isok(n) = {my(d = digits(n), p = vecprod(d)); if (p>0, isokd((n-p)*(n+p), d, n));} \\ Michel Marcus, May 07 2020

Extensions

More terms from Giovanni Resta, May 07 2020

A095992 a(1) = 30; for n > 1, a(n+1) = a(n) + {product of nonzero digits of a(n)}.

Original entry on oeis.org

30, 33, 42, 50, 55, 80, 88, 152, 162, 174, 202, 206, 218, 234, 258, 338, 410, 414, 430, 442, 474, 586, 826, 922, 958, 1318, 1342, 1366, 1474, 1586, 1826, 1922, 1958, 2318, 2366, 2582, 2742, 2854, 3174, 3258, 3498, 4362, 4506, 4626, 4914, 5058, 5258, 5658
Offset: 1

Views

Author

Julien Piquet (julipiquet(AT)yahoo.fr), Jul 18 2004

Keywords

References

  • From a puzzle; explanation found by Pierre Roger.

Crossrefs

Programs

  • Mathematica
    a[1] = 30; a[n_] := a[n] = Block[{s = Sort[ IntegerDigits[a[n - 1]]]}, While[ s[[1]] == 0, s = Drop[s, 1]]; a[n - 1] + Times @@ s]; Table[ a[n], {n, 50}]
    nxt[n_] := n+Times@@Select[IntegerDigits[n], #>0&]; NestList[nxt,30,50] (* Harvey P. Dale, Jan 08 2011 *)

Extensions

The proposer suggests that this web site may contain other sequences also.
Edited and extended by Robert G. Wilson v and Klaus Brockhaus, Jul 20 2004
Previous Showing 21-23 of 23 results.