cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A127652 Integers whose unitary aliquot sequences are longer than their ordinary aliquot sequences.

Original entry on oeis.org

25, 28, 36, 40, 50, 68, 70, 74, 94, 95, 98, 116, 119, 134, 142, 143, 154, 162, 170, 175, 182, 189, 190, 200, 220, 226, 242, 245, 262, 273
Offset: 1

Views

Author

Ant King, Jan 24 2007

Keywords

Comments

Here the length of an aliquot sequence is defined to be the length of the transient part of its trajectory + the length of its terminal cycle.

Examples

			a(5)=50 because the fifth integer whose unitary aliquot sequence is longer than its ordinary aliquot sequence is 50.
		

References

  • Riele, H. J. J. te; Unitary Aliquot Sequences. MR 139/72, Mathematisch Centrum, 1972, Amsterdam.
  • Riele, H. J. J. te; Further Results On Unitary Aliquot Sequences. NW 2/73, Mathematisch Centrum, 1973, Amsterdam.

Crossrefs

Programs

  • Mathematica
    UnitaryDivisors[n_Integer?Positive]:=Select[Divisors[n],GCD[ #,n/# ]==1&];sstar[n_]:=Plus@@UnitaryDivisors[n]-n;g[n_] := If[n > 0, sstar[n], 0];UnitaryTrajectory[n_] := Most[NestWhileList[g, n, UnsameQ, All]];s[n_]:=DivisorSigma[1,n]-n;h[n_] := If[n > 0, s[n], 0];OrdinaryTrajectory[n_] := Most[NestWhileList[h, n, UnsameQ, All]];Select[Range[275],Length[UnitaryTrajectory[ # ]]>Length[OrdinaryTrajectory[ # ]] &]

Formula

Sequence gives those values of n for which A097032(n)>A098007(n).

A135244 Largest m such that the sum of the aliquot parts of m (A001065) equals n, or 0 if no such number exists.

Original entry on oeis.org

0, 4, 9, 0, 25, 8, 49, 15, 14, 21, 121, 35, 169, 33, 26, 55, 289, 77, 361, 91, 38, 85, 529, 143, 46, 133, 28, 187, 841, 221, 961, 247, 62, 253, 24, 323, 1369, 217, 81, 391, 1681, 437, 1849, 403, 86, 493, 2209, 551, 94, 589, 0, 667, 2809, 713, 106, 703, 68, 697, 3481
Offset: 2

Views

Author

Ophir Spector (ospectoro(AT)yahoo.com), Nov 25 2007

Keywords

Comments

Previous name: Aliquot predecessors with the largest values.
Find each node's predecessors in aliquot sequences and choose the largest predecessor.
Climb the aliquot trees on shortest paths (see A135245 = Climb the aliquot trees on thickest branches).
The sequence starts at offset 2, since all primes satisfy sigma(n)-n = 1. - Michel Marcus, Nov 11 2014

Examples

			a(25) = 143 since 25 has 3 predecessors (95,119,143), 143 being the largest.
a(5) = 0 since it has no predecessors (see Untouchables - A005114).
		

Crossrefs

Programs

  • Mathematica
    seq[max_] := Module[{s = Table[0, {n, 1, max}], i}, Do[If[(i = DivisorSigma[1, n] - n) <= max, s[[i]] = Max[s[[i]], n]], {n, 2, (max - 1)^2}]; Rest @ s]; seq[50]
  • PARI
    lista(nn) = {for (n=2, nn, k = (n-1)^2; while(k && (sigma(k)-k != n), k--); print1(k, ", "););} \\ Michel Marcus, Nov 11 2014

Extensions

a(1)=0 removed and offset set to 2 by Michel Marcus, Nov 11 2014
New name from Michel Marcus, Oct 31 2023

A371421 Numbers whose aliquot-like sequence based on the largest aliquot divisor of the sum of divisors of n (A371418) terminates in a fixed point.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 16, 17, 18, 19, 20, 21, 22, 24, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 43, 45, 46, 47, 49, 50, 51, 52, 53, 55, 57, 58, 59, 61, 63, 64, 67, 68, 71, 73, 74, 79, 80, 81, 82, 89, 93, 96, 97, 98, 100, 101
Offset: 1

Views

Author

Amiram Eldar, Mar 23 2024

Keywords

Comments

It is unknown whether 222 is a term of this sequence or not (see A371423).

Examples

			3 is a term because when we start with 3 and repeatedly apply the mapping x -> A371418(x), we get the sequence 3, 2, 1, 1, 1, ...
40 is a term because when we start with 40 and repeatedly apply the mapping x -> A371418(x), we get the sequence 40, 45, 39, 28, 28, 28, ...
		

Crossrefs

A023194 is a subsequence.

Programs

  • Mathematica
    r[n_] := n/FactorInteger[n][[1, 1]]; f[n_] := r[DivisorSigma[1, n]]; q[n_] := Module[{m = NestWhileList[f, n, UnsameQ, All][[-1]]}, f[m] == m]; Select[Range[221], q]

A135245 Aliquot predecessors with the largest degrees.

Original entry on oeis.org

0, 0, 4, 9, 0, 25, 8, 49, 15, 14, 21, 121, 35, 169, 33, 12, 55, 289, 65, 361, 91, 20, 85, 529, 143, 46, 133, 28, 187, 841, 161, 961, 247, 62, 253, 24, 323, 1369, 217, 81, 391, 1681, 341, 1849, 403, 86, 493, 2209, 551, 40, 481, 0, 667, 2809, 533, 106, 703, 68, 697, 3481
Offset: 1

Views

Author

Ophir Spector, ospectoro (AT) yahoo.com, Nov 25 2007

Keywords

Comments

Find each node's predecessors in aliquot sequences and choose the node with largest number of predecessors.
Climb the aliquot trees on thickest branches (see A135244 = Climb the aliquot trees on shortest paths).

Examples

			a(25) = 143 since 25 has 3 predecessors (95,119,143) with degrees (4,5,7), 143 having the largest degree. a(5) = 0 since it has no predecessors (see Untouchables - A005114).
		

Crossrefs

A099771 Smallest n-aspiring number. That is, a(n) = smallest k such that s^(n)(k) is perfect but s^(n-1)(k) is not, where s(k) is the sum of the aliquot parts of k and s^(i) means iterate s i times.

Original entry on oeis.org

25, 95, 417, 675, 2541, 3888, 3528, 16256, 13984, 11312, 10648, 10688, 6672, 15364, 20476, 12288, 12636, 32216, 33304, 33896, 34504, 38660, 31824, 15792, 62296, 67304, 49120, 58104, 102740, 82120, 84704, 53680
Offset: 1

Views

Author

Gabriel Cunningham (gcasey(AT)mit.edu), Nov 11 2004

Keywords

Examples

			a(2) = 95 because s(s(95)) = s(25) = 6, which is perfect.
		

Crossrefs

Cf. A063769.

A347769 a(0) = 0; a(1) = 1; for n > 1, a(n) = A001065(a(n-1)) = sigma(a(n-1)) - a(n-1) (the sum of aliquot parts of a(n-1)) if this is not yet in the sequence; otherwise a(n) is the smallest number missing from the sequence.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 16, 15, 13, 14, 17, 18, 21, 19, 20, 22, 23, 24, 36, 55, 25, 26, 27, 28, 29, 30, 42, 54, 66, 78, 90, 144, 259, 45, 33, 31, 32, 34, 35, 37, 38, 39, 40, 50, 43, 41, 44, 46, 47, 48, 76, 64, 63, 49, 51, 52, 53, 56, 57, 58, 59, 60, 108, 172
Offset: 0

Views

Author

Eric Chen, Sep 13 2021

Keywords

Comments

This sequence is a permutation of the nonnegative integers iff Catalan's aliquot sequence conjecture (also called Catalan-Dickson conjecture) is true.
a(563) = 276 is the smallest number whose aliquot sequence has not yet been fully determined.
As long as the aliquot sequence of 276 is not known to be finite or eventually periodic, a(563+k) = A008892(k).

Examples

			a(0) = 0, a(1) = 1;
since A001065(a(1)) = 0 has already appeared in this sequence, a(2) = 2;
since A001065(a(2)) = 1 has already appeared in this sequence, a(3) = 3;
...
a(11) = 11;
since A001065(a(11)) = 1 has already appeared in this sequence, a(12) = 12;
since A001065(a(12)) = 16 has not yet appeared in this sequence, a(13) = A001065(a(12)) = 16;
since A001065(a(13)) = 15 has not yet appeared in this sequence, a(14) = A001065(a(13)) = 15;
since A001065(a(14)) = 9 has already appeared in this sequence, a(15) = 13;
...
		

Crossrefs

Cf. A032451.
Cf. A001065 (sum of aliquot parts).
Cf. A003023, A044050, A098007, A098008: ("length" of aliquot sequences, four versions).
Cf. A007906.
Cf. A115060 (maximum term of aliquot sequences).
Cf. A115350 (termination of the aliquot sequences).
Cf. A098009, A098010 (records of "length" of aliquot sequences).
Cf. A290141, A290142 (records of maximum term of aliquot sequences).
Aliquot sequences starting at various numbers: A000004 (0), A000007 (1), A033322 (2), A010722 (6), A143090 (12), A143645 (24), A010867 (28), A008885 (30), A143721 (38), A008886 (42), A143722 (48), A143723 (52), A008887 (60), A143733 (62), A143737 (68), A143741 (72), A143754 (75), A143755 (80), A143756 (81), A143757 (82), A143758 (84), A143759 (86), A143767 (87), A143846 (88), A143847 (96), A143919 (100), A008888 (138), A008889 (150), A008890 (168), A008891 (180), A203777 (220), A008892 (276), A014360 (552), A014361 (564), A074907 (570), A014362 (660), A269542 (702), A045477 (840), A014363 (966), A014364 (1074), A014365 (1134), A074906 (1521), A143930 (3630), A072891 (12496), A072890 (14316), A171103 (46758), A072892 (1264460).

Programs

  • PARI
    A347769_list(N)=print1(0, ", "); if(N>0, print1(1, ", ")); v=[0, 1]; b=1; for(n=2, N, if(setsearch(Set(v), sigma(b)-b), k=1; while(k<=n, if(!setsearch(Set(v), k), b=k; k=n+1, k++)), b=sigma(b)-b); print1(b, ", "); v=concat(v, b))
Previous Showing 11-16 of 16 results.