cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A299205 Numbers k such that k-1 divides tau(k), where tau(k) = A000594(k) is Ramanujan's tau function.

Original entry on oeis.org

2, 3, 10, 14, 15, 56, 57, 59, 70, 85, 105, 107, 116, 136, 209, 267, 295, 323, 352, 393, 415, 442, 530, 551, 645, 646, 760, 855, 1197, 1288, 1342, 1415, 1472, 1496, 1625, 1765, 1953, 2002, 2255, 2485, 2847, 2945, 3039, 3382, 3591, 3745, 3905, 4233, 4264, 4313
Offset: 1

Views

Author

Seiichi Manyama, Feb 05 2018

Keywords

Comments

Numbers k such that A299204(k) = 0.

Crossrefs

For the sequence when n is prime see A299172.

Programs

  • Mathematica
    Select[Range[2, 5000], Divisible[RamanujanTau[#], #-1] &] (* Amiram Eldar, Jan 10 2025 *)
  • PARI
    isok(n) = (ramanujantau(n) % (n-1)) == 0; \\ Michel Marcus, Feb 05 2018

A063940 Composite numbers k such that Ramanujan's function tau(k) (A000594) is not divisible by k.

Original entry on oeis.org

22, 26, 33, 34, 38, 39, 44, 46, 51, 52, 55, 57, 58, 62, 65, 66, 68, 69, 74, 76, 77, 78, 82, 85, 86, 87, 93, 94, 95, 99, 102, 104, 106, 110, 111, 114, 116, 117, 118, 119, 121, 122, 123, 124, 129, 130, 132, 133, 134, 136, 138, 141, 142, 143, 145, 146, 148, 152, 153
Offset: 1

Views

Author

Robert G. Wilson v, Aug 31 2001

Keywords

Examples

			22 is a term because Ramanujan's tau(22) = 18643272 and 18643272 mod 22 = 10.
		

Crossrefs

Programs

  • Mathematica
    Select[ Range[ 70 ], Mod[ CoefficientList[ Take[ Expand[ Product[ (1 - x^k)^24, {k, 1, 70} ] ], 70 ], x ][ [ # ] ], # ] != 0 && ! PrimeQ[ # ] & ]
    (* First do *) <Dean Hickerson, Jan 03 2003 *)

A191599 Numbers k that do not divide Ramanujan's tau(k).

Original entry on oeis.org

11, 13, 17, 19, 22, 23, 26, 29, 31, 33, 34, 37, 38, 39, 41, 43, 44, 46, 47, 51, 52, 53, 55, 57, 58, 59, 61, 62, 65, 66, 67, 68, 69, 71, 73, 74, 76, 77, 78, 79, 82, 83, 85, 86, 87, 89, 93, 94, 95, 97, 99, 101, 102, 103, 104, 106, 107, 109, 110, 111, 113, 114
Offset: 1

Views

Author

Luis H. Gallardo, Jun 08 2011

Keywords

Comments

This sequence has its first 45 terms in common with A068191.
Subsequence of A068191.
Complement of A063938. - Omar E. Pol, Aug 28 2011

Examples

			For n=1, a(1)=11 since 11 does not divide tau(11) = 534612.
		

Crossrefs

Programs

  • Maple
    with(numtheory): tn := proc(n) modp(-840*sum(k^4*sigma(k)*sigma(n-k),k=1..n-1),n); end; ser := proc(a,b) local n,lis; lis := []; for n from a to b do if tn(n) <> 0 then lis := [op(lis),n]; fi; od; lis; end;
  • Mathematica
    Select[Range[120], !Divisible[RamanujanTau[#], #]&] (* Jean-François Alcover, Nov 29 2017 *)
  • PARI
    isok(k) = ramanujantau(k) % k; \\ Michel Marcus, Aug 14 2021

A295654 Numbers k such that tau(k) +- 1 is congruent to 0 (mod k), where tau is the Ramanujan tau function (A000594).

Original entry on oeis.org

1, 11, 23, 691, 5807, 85583, 189751, 37264081
Offset: 1

Views

Author

Seiichi Manyama, Nov 25 2017

Keywords

Comments

Compare with A063938.
a(9) > 8*10^7. - Seiichi Manyama, Jan 01 2018

Examples

			tau(11) = 534612 and 11 | (534612 - 1).
tau(23) = 18643272 and 23 | (18643272 - 1).
tau(691) = -2747313442193908 and 691 | (-2747313442193908 - 1).
tau(5807) = 237456233554906855056 and 5807 | (237456233554906855056 + 1).
tau(85583) = 90954516543892718450139576 and 85583 | (90954516543892718450139576 - 1).
tau(189751) = 4685230754227867924094547904 and 189751 | (4685230754227867924094547904 + 1).
tau(37264081) = 831105005803795341334403814220760726696052 and 37264081 | (831105005803795341334403814220760726696052 - 1).
		

Crossrefs

Programs

  • Mathematica
    fQ[n_] := Block[{t = RamanujanTau@n}, Mod[t, n] == 1 || Mod[t, n] + 1 == n]; (* Robert G. Wilson v, Nov 25 2017 *)
  • Python
    from itertools import count, islice
    from sympy import divisor_sigma
    def A295654_gen(startvalue=1): # generator of terms >= startvalue
        return filter(lambda n: n==1 or abs(-840*(pow(m:=n+1>>1,2,n)*(0 if n&1 else pow(m*divisor_sigma(m),2,n))+(sum(pow(i,4,n)*divisor_sigma(i)*divisor_sigma(n-i) for i in range(1,m))<<1)) % n)==1, count(max(startvalue,1)))
    A295654_list = list(islice(A295654_gen(),4)) # Chai Wah Wu, Nov 08 2022

Formula

A273650(a(n)) is 1 or n - 1.

Extensions

a(8) from Seiichi Manyama, Jan 01 2018

A299158 Numbers k such that k*(k+1) divides tau(k), where tau(k) = A000594(k) is Ramanujan's tau function.

Original entry on oeis.org

2, 3, 5, 6, 7, 20, 27, 45, 91, 160, 240, 243, 343, 384, 792, 896, 2639, 1163799
Offset: 1

Views

Author

Seiichi Manyama, Feb 04 2018

Keywords

Comments

a(19) > 5*10^6.
Numbers k such that A299165(k) = 0.
Intersection of A063938 and A299157.

Crossrefs

Programs

  • Mathematica
    Select[Range[1000], Divisible[RamanujanTau[#], #*(#+1)] &] (* Amiram Eldar, Jan 10 2025 *)
  • PARI
    isok(k) = !(ramanujantau(k) % (k*(k+1))); \\ Amiram Eldar, Jan 10 2025

A147317 Numbers k which divide tau(k) and are not 7-smooth (where tau(k) = A000594(k) is Ramanujan's tau function).

Original entry on oeis.org

88, 91, 92, 115, 161, 182, 207, 230, 264, 273, 276, 322, 345, 364, 414, 440, 455, 460, 483, 546, 549, 616, 644, 690, 728, 736, 792, 805, 819, 828, 910, 920, 928, 966, 1035, 1092, 1098, 1144, 1288, 1320, 1365, 1380, 1408, 1449, 1456, 1610, 1638, 1656, 1820
Offset: 1

Views

Author

Artur Jasinski, Nov 05 2008

Keywords

Crossrefs

Programs

  • Mathematica
    aa = {}; Do[If[Mod[RamanujanTau[n], n] == 0 && EulerPhi[210 n] != 48 n, AppendTo[aa, n]], {n, 1, 2000}]; aa
Previous Showing 11-16 of 16 results.