cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 91-100 of 118 results. Next

A246342 a(0) = 12, after which, if a(n-1) = product_{k >= 1} (p_k)^(c_k), then a(n) = (1/2) * (1 + product_{k >= 1} (p_{k+1})^(c_k)), where p_k indicates the k-th prime, A000040(k).

Original entry on oeis.org

12, 23, 15, 18, 38, 35, 39, 43, 24, 68, 86, 71, 37, 21, 28, 50, 74, 62, 56, 149, 76, 104, 230, 305, 235, 186, 278, 224, 1337, 1062, 2288, 8951, 4482, 16688, 67271, 33637, 16821, 66688, 571901, 338059, 181516, 258260, 455900, 1180337, 1080207, 1817863, 1157487, 984558, 1230848, 53764115
Offset: 0

Views

Author

Antti Karttunen, Aug 24 2014

Keywords

Comments

Iterates of A048673 starting from value 12.
All numbers 1 .. 11 are in finite cycles of A048673/A064216, thus 12 is the smallest number in this cycle, regardless of whether the cycle is infinite or finite.
This sequence soon reaches much larger values than the corresponding A246343 (iterating the same cycle in the other direction). However, with the corresponding sequences starting from 16 (A246344 & A246345), there is no such pronounced difference, and with them the bias is actually the other way.

Examples

			Start with a(0) = 12; thereafter each new term is obtained by replacing each prime factor of the previous term with the next prime, to whose product 1 is added before it is halved:
12 = 2^2 * 3 = p_1^2 * p_2 -> ((p_2^2 * p_3)+1)/2 = ((9*5)+1)/2 = 23, thus a(1) = 23.
23 = p_9 -> (p_10 + 1)/2 = (29+1)/2 = 15, thus a(2) = 15.
		

Crossrefs

A246343 gives the terms of the same cycle when going in the opposite direction from 12.

Programs

  • PARI
    default(primelimit, 2^30);
    A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ Using code of Michel Marcus
    A048673(n) = (A003961(n)+1)/2;
    k = 12; for(n=0, 1001, write("b246342.txt", n, " ", k) ; k = A048673(k));
    (Scheme, with memoization-macro definec)
    (definec (A246342 n) (if (zero? n) 12 (A048673 (A246342 (- n 1)))))

Formula

a(0) = 12, and for n >= 1, a(n) = A048673(a(n-1)).

A246343 a(0) = 12, after which, if (2*a(n-1)) - 1 = product_{k >= 1} (p_k)^(c_k) then a(n) = product_{k >= 1} (p_{k-1})^(c_k), where p_k indicates the k-th prime, A000040(k).

Original entry on oeis.org

12, 19, 31, 59, 44, 46, 55, 107, 134, 166, 317, 398, 282, 557, 470, 622, 763, 531, 1051, 1267, 1807, 3607, 7211, 4522, 9041, 3700, 3725, 3982, 7951, 15889, 30053, 24018, 24189, 34535, 14630, 12916, 21769, 27599, 24524, 32678, 26094, 43073, 34446, 68881, 116479, 143359, 275221, 550439, 667462, 1051489
Offset: 0

Views

Author

Antti Karttunen, Aug 24 2014

Keywords

Comments

Iterates of A064216 starting from value 12.
All numbers from 1 to 11 are in finite cycles of A048673/A064216, thus 12 is the smallest number in this cycle, regardless of whether it is infinite or finite.

Examples

			Start with a(0) = 12; then after each new term is obtained by doubling the previous term, from which one is subtracted, after which each prime factor is replaced with the previous prime:
12 -> ((2*12)-1) = 23 = p_9, and p_8 = 19, thus a(1) = 19.
19 -> ((2*19)-1) = 37 = p_12, and p_11 = 31, thus a(2) = 31.
31 -> ((2*31)-1) = 61 = p_18, and p_17 = 59, thus a(3) = 59.
59 -> ((2*59)-1) = 117 = 3*3*13 = p_2 * p_2 * p_6, and p_1 * p_1 * p_5 = 2*2*11 = 44, thus a(4) = 44.
		

Crossrefs

A246342 gives the terms of the same cycle when going to the opposite direction from 12.

Programs

  • PARI
    default(primelimit, 2^30);
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A064216(n) = A064989((2*n)-1);
    k = 12; for(n=0, 1001, write("b246343.txt", n, " ", k); k = A064216(k));
    (Scheme, with memoization-macro definec)
    (definec (A246343 n) (if (zero? n) 12 (A064216 (A246343 (- n 1)))))

Formula

a(0) = 12, a(n) = A064216(a(n-1)).

A246344 a(0) = 16, after which, if a(n-1) = product_{k >= 1} (p_k)^(c_k), then a(n) = (1/2) * (1 + product_{k >= 1} (p_{k+1})^(c_k)), where p_k indicates the k-th prime, A000040(k).

Original entry on oeis.org

16, 41, 22, 20, 32, 122, 101, 52, 77, 72, 338, 434, 611, 451, 280, 1040, 4820, 7907, 3960, 30713, 15364, 22577, 12154, 9791, 4902, 8108, 9131, 5815, 4099, 2056, 3551, 2095, 1474, 1385, 984, 2903, 1455, 1768, 4361, 5869, 2940, 19058, 18845, 13227, 11053, 8707, 4357, 2182, 1640, 4064, 15917, 9432, 46238
Offset: 0

Views

Author

Antti Karttunen, Aug 24 2014

Keywords

Comments

Iterates of A048673 starting from value 16.
Either this sequence is actually part of the cycle containing 12 (see A246342) or 16 is the smallest member of this cycle (regardless of whether this cycle is finite or infinite), which follows because all numbers 1 .. 11 are in finite cycles, and also 13 and 14 are in closed cycles and 15 is in the cycle of 12.

Examples

			Start with a(0) = 16; then after each new term is obtained by replacing each prime factor of the previous term with the next prime, to whose product is added one before it is halved:
16 = 2^4 = p_1^4 -> ((p_2^4)+1)/2 = (3^4 + 1)/2 = (81+1)/2 = 41, thus a(1) = 41.
41 = p_13 -> ((p_14)+1)/2 = (43+1)/2 = 22, thus a(2) = 22.
		

Crossrefs

A246345 gives the terms of the same cycle when going to the opposite direction from 16.

Programs

  • PARI
    default(primelimit, 2^30);
    A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i,1] = nextprime(f[i,1]+1)); factorback(f); \\ Using code of Michel Marcus
    A048673(n) = (A003961(n)+1)/2;
    k = 16; for(n=0, 1001, write("b246344.txt", n, " ", k) ; k = A048673(k));
    (Scheme, with memoization-macro definec)
    (definec (A246344 n) (if (zero? n) 16 (A048673 (A246344 (- n 1)))))

Formula

a(0) = 16, and for n >= 1, a(n) = A048673(a(n-1)).

A246345 a(0) = 16, after which, if (2*a(n-1)) - 1 = product_{k >= 1} (p_k)^(c_k) then a(n) = product_{k >= 1} (p_{k-1})^(c_k), where p_k indicates the k-th prime, A000040(k).

Original entry on oeis.org

16, 29, 34, 61, 49, 89, 106, 199, 389, 310, 617, 524, 694, 1207, 1921, 3097, 3899, 4142, 3374, 3674, 4234, 8461, 16903, 20211, 37841, 22408, 26853, 26391, 48031, 68605, 137201, 81272, 108334, 137809, 266737, 512627, 347932, 497005, 982081, 1942279, 3855031, 5292209
Offset: 0

Views

Author

Antti Karttunen, Aug 24 2014

Keywords

Comments

Iterates of A064216 starting from value 16.
See also the comments in A246344.

Examples

			Start with a(0) = 16; then after each new term is obtained by doubling the previous term, from which one is subtracted, after which each prime factor is replaced with the previous prime:
16 -> ((2*16)-1) = 31 = p_1, and p_10 = 29, thus a(1) = 29.
29 -> ((2*29)-1) = 57 = 3*19 = p_2 * p_8, and p_1 * p_7 = 2*17 = 34, thus a(2) = 34.
		

Crossrefs

A246344 gives the terms of the same cycle when going to the opposite direction from 16.

Programs

  • Mathematica
    nxt[n_]:=Times@@(NextPrime[#,-1]&/@(Flatten[Table[#[[1]],{#[[2]]}]&/@ FactorInteger[2 n-1]])); NestList[nxt,16,50] (* Harvey P. Dale, Apr 04 2015 *)
  • PARI
    default(primelimit, 2^30);
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A064216(n) = A064989((2*n)-1);
    k = 16; for(n=0, 1001, write("b246345.txt", n, " ", k); k = A064216(k));
    (Scheme, with memoization-macro definec)
    (definec (A246345 n) (if (zero? n) 16 (A064216 (A246345 (- n 1)))))

Formula

a(0) = 16, a(n) = A064216(a(n-1)).

A246374 Primes p such that if 2p-1 = product_{k >= 1} A000040(k)^(c_k), then p > product_{k >= 1} A000040(k-1)^(c_k).

Original entry on oeis.org

5, 11, 13, 17, 23, 41, 43, 53, 59, 61, 73, 83, 113, 131, 137, 149, 163, 167, 173, 179, 193, 233, 239, 257, 263, 281, 293, 311, 313, 347, 353, 383, 389, 401, 419, 431, 443, 449, 463, 479, 491, 503, 509, 523, 557, 563, 587, 593, 599, 613, 617, 641, 653, 677, 683, 743, 761, 773, 787, 797
Offset: 1

Views

Author

Antti Karttunen, Aug 25 2014

Keywords

Comments

Primes p such that A064216(p) < p, or equally, A064989(2p-1) < p.
For all primes p here, 2p-1 must be composite (a necessary but not sufficient condition).

Examples

			5 is present, as 2*5 - 1 = 9 = p_2 * p_2, and p_1 * p_1 = 4, and 5 > 4.
		

Crossrefs

Intersection of A000040 and A246371.
A246373 gives the primes not here.

Programs

  • PARI
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    n = 0; forprime(p=2,2^31, if((A064989((2*p)-1) < p), n++; write("b246374.txt", n, " ", p); if(n > 9999, break)));
    (Scheme, with Antti Karttunen's IntSeq-library)
    (define A246374 (MATCHING-POS 1 1 (lambda (n) (and (prime? n) (< (A064216 n) n)))))

A270432 a(n) = number of terms A270430 <= n; least monotonic left inverse of A270430.

Original entry on oeis.org

1, 2, 3, 4, 5, 5, 5, 6, 7, 8, 8, 9, 10, 10, 10, 11, 12, 12, 12, 13, 13, 13, 13, 13, 14, 15, 16, 16, 17, 18, 19, 20, 21, 22, 22, 23, 24, 24, 25, 26, 27, 28, 28, 28, 28, 28, 28, 29, 30, 31, 31, 32, 33, 33, 33, 33, 33, 34, 34, 34, 34, 35, 35, 36, 37, 37, 37, 38, 39, 39, 39, 39, 39, 40, 41, 41, 42, 42, 42, 43, 44, 45
Offset: 1

Views

Author

Antti Karttunen, Mar 17 2016

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_] := (Times @@ Power[If[# == 1, 1, NextPrime@ #] & /@ First@ #, Last@ #] + 1)/2 &@ Transpose@ FactorInteger@ n; g[n_] := Times @@ Power[If[# == 1, 1, NextPrime[#, -1]] & /@ First@ #, Last@ #] &@ Transpose@ FactorInteger[2 n - 1]; s = Select[Range@ 144, Xor[EvenQ@ f@ #, OddQ@ g@ #] &]; Table[Count[s, k_ /; k <= n], {n, 84}] (* Michael De Vlieger, Mar 17 2016 *)

Formula

a(1) = 1, for n > 1, a(n) = 1-(A048673(n)-A064216(n) reduced modulo 2) + a(n-1).
Other identities. For all n >= 1:
a(n) = n - A270433(n).
a(A270430(n)) = n.

A270433 a(n) = number of terms A270431 <= n; least monotonic left inverse of A270431.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 2, 2, 2, 2, 3, 3, 3, 4, 5, 5, 5, 6, 7, 7, 8, 9, 10, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 13, 13, 13, 14, 14, 14, 14, 14, 15, 16, 17, 18, 19, 19, 19, 19, 20, 20, 20, 21, 22, 23, 24, 24, 25, 26, 27, 27, 28, 28, 28, 29, 30, 30, 30, 31, 32, 33, 34, 34, 34, 35, 35, 36, 37, 37, 37, 37, 38, 39, 39, 40, 41, 42
Offset: 1

Views

Author

Antti Karttunen, Mar 17 2016

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_] := (Times @@ Power[If[# == 1, 1, NextPrime@ #] & /@ First@ #, Last@ #] + 1)/2 &@ Transpose@ FactorInteger@ n; g[n_] := Times @@ Power[If[# == 1, 1, NextPrime[#, -1]] & /@ First@ #, Last@ #] &@ Transpose@ FactorInteger[2 n - 1]; s = Select[Range@ 200, Xor[EvenQ@ f@ #, EvenQ@ g@ #] &] ; Table[Count[s, k_ /; k <= n], {n, 88}] (* Michael De Vlieger, Mar 17 2016 *)

Formula

a(1) = 0, for n > 1, a(n) = (A048673(n)-A064216(n) reduced modulo 2) + a(n-1).
Other identities. For all n >= 1:
a(n) = n - A270432(n).
a(A270431(n)) = n.

A349573 a(n) = A048673(n) - n, where A048673(n) = (A003961(n)+1) / 2, and A003961(n) shifts the prime factorization of n one step towards larger primes.

Original entry on oeis.org

0, 0, 0, 1, -1, 2, -1, 6, 4, 1, -4, 11, -4, 3, 3, 25, -7, 20, -7, 12, 7, -2, -8, 44, 0, 0, 36, 22, -13, 23, -12, 90, 0, -5, 4, 77, -16, -3, 4, 55, -19, 41, -19, 15, 43, -2, -20, 155, 12, 24, -3, 25, -23, 134, -9, 93, 1, -11, -28, 98, -27, -6, 75, 301, -5, 32, -31, 18, 4, 46, -34, 266, -33, -12, 48, 28, -5, 50, -37
Offset: 1

Views

Author

Antti Karttunen, Nov 23 2021

Keywords

Crossrefs

Cf. A048674 (positions of zeros), A246351 (negative terms), A246281 (nonpositive terms), A246352 (nonnegative terms), A246282 (positive terms), A269860 (even terms), A269861 (odd terms).

Programs

  • Mathematica
    f[p_, e_] := NextPrime[p]^e; a[1] = 0; a[n_] := (1 + Times @@ f @@@ FactorInteger[n])/2 - n; Array[a, 100] (* Amiram Eldar, Nov 23 2021 *)
  • PARI
    A048673(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); (1/2)*(1+factorback(f)); };
    A349573(n) = (A048673(n)-n);

Formula

a(n) = A048673(n) - n.
a(n) = Sum_{d|n, dA349571(n/d).

A247283 Positions of subrecords in A048673.

Original entry on oeis.org

5, 7, 9, 15, 18, 27, 36, 54, 72, 108, 144, 216, 288, 432, 576, 864, 1152, 1728, 2304, 3456, 4608, 6912, 9216, 13824, 18432, 27648, 36864, 55296, 73728, 110592, 147456, 221184, 294912, 442368, 589824, 884736, 1179648, 1769472, 2359296, 3538944, 4718592, 7077888
Offset: 1

Views

Author

Antti Karttunen, Sep 11 2014

Keywords

Comments

Odd bisection seems to be A116453 (i.e. A005010, 9*2^n from a(3)=9 onward).
After terms 7 and 15, even bisection from a(6)=27 onward seems to be A175806 (27*2^n).

Examples

			The fourth (A246360(4) = 5) and the fifth (A246360(5) = 8) record of A048673 (1, 2, 3, 5, 4, 8, ...) occur at A029744(4) = 4 and A029744(5) = 6 respectively. In range between, the maximum must occur at 5, thus a(4-3) = a(1) = 5. (All the previous records of A048673 are in consecutive positions, 1, 2, 3, 4, thus there are no previous subrecords).
The ninth (A246360(9) = 68) and the tenth (A246360(10) = 122) record of A048673 occur at A029744(9) = 24 and A029744(10) = 32 respectively. For n in range 25 .. 31 the values of A048673 are: 25, 26, 63, 50, 16, 53, 19, of which 63 is the maximum, and because it occurs at n = 27, we have a(9-3) = a(6) = 27.
		

Crossrefs

A247284 gives the corresponding values.

Programs

  • PARI
    \\ Compute A245449, A246360, A247283 and A247284 at the same time:
    default(primelimit,(2^31)+(2^30));
    A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ From Michel Marcus
    A048673(n) = (A003961(n)+1)/2;
    n = 0; i2 = 0; i3 = 0; ir = 0; prevmax = 0; submax = 0; while(n < 2^32, n++; a_n = A048673(n); if((A048673(a_n) == n), i2++; write("b245449.txt", i2, " ", n)); if((a_n > prevmax), if(submax > 0, i3++; write("b247283.txt", i3, " ", submaxpt); write("b247284.txt", i3, " ", submax)); prevmax = a_n; submax = 0; ir++; write("b029744_empirical.txt", ir, " ", n); write("b246360_empirical.txt", ir, " ", a_n), if((a_n > submax), submax = a_n; submaxpt = n)));
    
  • Scheme
    (definec (A247283 n) (max_pt_in_range A048673 (+ (A029744 (+ n 3)) 1) (- (A029744 (+ n 4)) 1)))
    (define (max_pt_in_range intfun lowlim uplim) (let loop ((i (+ 1 lowlim)) (maxnow (intfun lowlim)) (maxpt lowlim)) (cond ((> i uplim) maxpt) (else (let ((v (intfun i))) (if (> v maxnow) (loop (+ 1 i) v i) (loop (+ 1 i) maxnow maxpt)))))))

Formula

a(n) = A064216(A247284(n)).
Conjectures from Chai Wah Wu, Jul 30 2020: (Start)
a(n) = 2*a(n-2) for n > 6.
G.f.: x*(3*x^5 - x^3 + x^2 - 7*x - 5)/(2*x^2 - 1). (End)

A253893 a(1) = 0, for n > 1, a(n) = 1 + a(A253889(n)).

Original entry on oeis.org

0, 1, 1, 2, 2, 2, 3, 2, 3, 4, 3, 4, 3, 3, 4, 4, 3, 3, 4, 4, 5, 5, 3, 5, 4, 4, 5, 4, 5, 5, 5, 4, 5, 5, 5, 6, 6, 4, 5, 6, 4, 6, 5, 5, 6, 5, 5, 5, 6, 4, 6, 6, 4, 6, 6, 5, 6, 5, 5, 6, 5, 6, 4, 6, 6, 6, 6, 4, 7, 7, 6, 6, 6, 5, 7, 7, 5, 6, 7, 6, 6, 7, 5, 7, 6, 6, 7, 5, 6, 7, 7, 6, 6, 6, 5, 7, 7, 6, 7, 7, 6, 6, 6, 6, 6, 7, 7, 6, 7, 7, 7, 7, 5, 7, 7, 6, 7, 7, 7, 7, 7, 5
Offset: 1

Views

Author

Antti Karttunen, Jan 22 2015

Keywords

Comments

When A048673 is represented as a binary tree, then a(n) gives the distance of node containing n from 1 at top.

Crossrefs

Formula

a(1) = 0, for n > 1, a(n) = 1 + A253893(A253889(n)).
a(n) = A000523(A064216(n)).
a(n) = A253894(n) - 1.
Other identities:
a(A007051(n)) = n for all n >= 0.
Previous Showing 91-100 of 118 results. Next