cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-27 of 27 results.

A064379 Irregular triangle whose n-th row is a list of numbers that are infinitarily relatively prime to n (n = 2, 3, ...).

Original entry on oeis.org

1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 4, 5, 1, 2, 3, 4, 5, 6, 1, 3, 5, 7, 1, 2, 3, 4, 5, 6, 7, 8, 1, 3, 4, 7, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1, 2, 5, 7, 9, 10, 11, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 1, 3, 4, 5, 9, 11, 12, 13, 1, 2, 4, 7, 8, 9, 11, 13, 14, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14
Offset: 2

Views

Author

Wouter Meeussen, Sep 27 2001

Keywords

Comments

The integers less than n that have no common infinitary divisors with n.

Examples

			irelprime[6] = {1, 4, 5} because iDivisors[6] = {1, 2, 3, 6} and iDivisors[4] = {1, 4} so 4 is infinitary_relatively_prime to 6 since it lacks common infinitary divisors with 6.
For n = 2 ..8 irelprime[n] gives {1}, {1,2}, {1,2,3}, {1,2,3,4}, {1,4,5}, {1,2,3,4,5,6}, {1,3,5,7}.
Triangle starts:
   2: 1;
   3: 1, 2;
   4: 1, 2, 3;
   5: 1, 2, 3, 4;
   6: 1, 4, 5;
   7: 1, 2, 3, 4, 5, 6;
   8: 1, 3, 5, 7;
   9: 1, 2, 3, 4, 5, 6, 7, 8;
  10: 1, 3, 4, 7, 9;
  11: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10;
  12: 1, 2, 5, 7, 9, 10, 11;
  13: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12;
  14: 1, 3, 4, 5, 9, 11, 12, 13;
  15: 1, 2, 4, 7, 8, 9, 11, 13, 14;
		

Crossrefs

Programs

  • Mathematica
    irelprime[ n_ ] := Select[ temp=iDivisors[ n ]; Range[ n ], Intersection[ iDivisors[ # ], temp ]==={1}& ]; (* with iDivisors of n as *) bitty[ k_ ] := Union[ Flatten[ Outer[ Plus, Sequence@@{0, #1}&/@Union[ 2^Range[ 0, Floor[ Log[ 2, k ] ] ]*Reverse[ IntegerDigits[ k, 2 ] ] ] ] ] ]; iDivisors[ k_Integer ] := Sort[ (Times @@(First[ it ]^(#1/.z-> List))&)/@Flatten[ Outer[ z, Sequence@@bitty/@Last[ it=Transpose[ FactorInteger[ k ] ] ], 1 ] ] ]; iDivisors[ 1 ] := {1};
    infCoprimeQ[n1_, n2_] := Module[{g = GCD[n1, n2]}, If[g == 1, True, AllTrue[ FactorInteger[g][[;; , 1]], BitAnd @@ IntegerExponent[{n1, n2}, #] == 0 &]]]; row[n_] := Select[Range[n - 1], infCoprimeQ[#, n] &]; Table[row[n], {n, 2, 16}] // Flatten (* Amiram Eldar, Mar 26 2023 *)
  • PARI
    isinfcoprime(n1, n2) = {my(g = gcd(n1, n2), p, e1, e2); if(g == 1,return(1)); p = factor(g)[, 1]; for(i=1, #p, e1 = valuation(n1, p[i]); e2 = valuation(n2, p[i]); if(bitand(e1, e2) > 0, return(0))); 1; }
    row(n) = select(x->isinfcoprime(x, n), vector(n-1, i, i)); \\ Amiram Eldar, Mar 26 2023

A177333 Smallest factor in the factorization of n! over distinct terms of A050376.

Original entry on oeis.org

2, 2, 2, 2, 5, 5, 2, 2, 7, 7, 3, 3, 2, 2, 2, 2, 5, 5, 4, 3, 2, 2, 4, 4, 2, 2, 2, 2, 4, 4, 2, 2, 3, 3, 3, 3, 2, 2, 4, 4, 2, 2, 2, 2, 3, 3, 4, 4, 2, 2, 2, 2, 4, 4, 2, 2, 3, 3, 7, 7, 2, 2, 2, 2, 3, 3, 3, 4, 2, 2, 4, 4, 2, 2, 2, 2, 4, 4, 4, 4, 2, 2, 2, 2, 3, 4, 2, 2, 4, 4, 5, 3, 2, 2, 4, 4, 2, 2, 2, 2, 3, 3, 2, 2, 4
Offset: 2

Views

Author

Vladimir Shevelev, May 06 2010

Keywords

Examples

			The factorization of 10! = 3628800 is 2^8*3^4*5^2*7^1, where 2^8 > 3^4 > 5^2 > 7, so a(10)=7 is the smallest of these 4 factors.
		

References

  • V. S. Shevelev, Multiplicative functions in the Fermi-Dirac arithmetic, Izvestia Vuzov of the North-Caucasus region, Nature sciences 4 (1996), 28-43 [Russian].

Crossrefs

Programs

  • Maple
    A177333 := proc(n) local a,p,pow2 ; a := n! ; for p in ifactors(n!)[2] do pow2 := convert( op(2,p),base,2) ; for j from 1 to nops(pow2) do if op(j,pow2) <> 0 then a := min(a,op(1,p)^(2^(j-1))) ; end if; end do: end do: return a ; end proc:
    seq(A177333(n),n=2..120) ; # R. J. Mathar, Jun 16 2010
  • Mathematica
    b[n_] :=2^(-1+Position[ Reverse@IntegerDigits[n, 2],?(#==1&)])//Flatten; a[n] := Module[{np = PrimePi[n]}, v=Table[0,{np}]; Do[p = Prime[k]; Do[v[[k]] += IntegerExponent[j, p], {j,2,n}],  {k,1,np}]; Min[(Prime/@Range[np])^(b/@v) // Flatten]]; Array[a, 105, 2] (* Amiram Eldar, Sep 17 2019 *)

Extensions

Corrected from a(10) on and extended beyond a(30) by R. J. Mathar, Jun 16 2010

A177334 Largest factor in the factorization of n! over distinct terms of A050376.

Original entry on oeis.org

2, 3, 4, 5, 16, 16, 16, 81, 256, 256, 256, 256, 256, 256, 256, 256, 65536, 65536, 65536, 65536, 65536, 65536, 65536, 65536, 65536, 65536, 65536, 65536, 65536, 65536, 65536, 65536, 4294967296, 4294967296, 4294967296, 4294967296, 4294967296, 4294967296
Offset: 2

Views

Author

Vladimir Shevelev, May 06 2010

Keywords

Comments

Each number >=2 has a unique factorization over distinct terms of A050376.
This is obtained from the standard prime factor representation by splitting the exponents into a sum of powers of 2, and further factorization according to the nonzero term of this base-2 representation.
The largest factor of this representation of A000142(n) defines this sequence.

References

  • V. S. Shevelev, Multiplicative functions in the Fermi-Dirac arithmetic, Izvestia Vuzov of the North-Caucasus region, Nature sciences 4 (1996), 28-43 [Russian].

Crossrefs

Programs

  • Maple
    A177334 := proc(n) local a,p,pow2 ; a := 1 ; for p in ifactors(n!)[2] do pow2 := convert( op(2,p),base,2) ; for j from 1 to nops(pow2) do if op(j,pow2) <> 0 then a := max(a,op(1,p)^(2^(j-1))) ; end if; end do: end do: return a ; end proc:
    seq(A177334(n),n=2..60) ; # R. J. Mathar, Jun 16 2010
  • Mathematica
    b[n_] :=2^(-1+Position[ Reverse@IntegerDigits[n, 2],?(#==1&)])//Flatten; a[n] := Module[{np = PrimePi[n]}, v=Table[0,{np}]; Do[p = Prime[k]; Do[v[[k]] += IntegerExponent[j, p], {j,2,n}],  {k,1,np}]; Max[(Prime/@Range[np])^(b/@v) // Flatten]]; Array[a, 38, 2]  (* Amiram Eldar, Sep 17 2019 *)

Extensions

a(18) and a(19) corrected and sequence extended by R. J. Mathar, Jun 16 2010

A176525 Fermi-Dirac semiprimes: products of two distinct terms of A050376.

Original entry on oeis.org

6, 8, 10, 12, 14, 15, 18, 20, 21, 22, 26, 27, 28, 32, 33, 34, 35, 36, 38, 39, 44, 45, 46, 48, 50, 51, 52, 55, 57, 58, 62, 63, 64, 65, 68, 69, 74, 75, 76, 77, 80, 82, 85, 86, 87, 91, 92, 93, 94, 95, 98, 99, 100, 106, 111, 112, 115, 116, 117, 118, 119, 122
Offset: 1

Views

Author

Vladimir Shevelev, Apr 19 2010, Apr 20 2010

Keywords

Comments

The sequence essentially differs from A000379 beginning with a(108)=212 (not 210). All squarefree terms of A001358 are in the sequence.

References

  • Vladimir S. Shevelev, Multiplicative functions in the Fermi-Dirac arithmetic, Izvestia Vuzov of the North-Caucasus region, Nature sciences, Vol. 4 (1996), pp. 28-43 [Russian].

Crossrefs

Programs

  • Mathematica
    Select[Range[120], Plus @@ DigitCount[Last /@ FactorInteger[#], 2, 1] == 2 &] (* Amiram Eldar, Nov 27 2020 *)

Formula

If a(n)=u*v, uA050376 "Fermi-Dirac primes", then A064380(a(n))=a(n)-u-v+1+Sum{i>=1}(-1)^(i-1)*floor(v/u^i).

Extensions

Effectively duplicate content (due to duplicate referenced sequence) removed by Peter Munn, Dec 19 2019

A185088 a(n) = |n^2 - A185079(n)|.

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 4, 1, 10, 1, 4, 1, 4, 9, 1, 1, 6, 1, 10, 7, 20, 1, 24, 1, 4, 9, 24, 1, 36, 1, 4, 33, 22, 25, 4, 1, 4, 9, 20, 1, 132, 1, 16, 45, 28, 1, 8, 1, 4, 9, 26, 1, 36, 1, 104, 49, 34, 1, 0, 1, 4, 49, 16, 25, 36, 1, 34, 57, 140, 1, 84, 1, 4, 9, 76, 73, 36, 1, 26, 1, 80, 1, 16, 11, 128, 9, 4, 1, 180, 105, 64, 55, 92, 25, 36
Offset: 2

Views

Author

Vladimir Shevelev, Feb 18 2011

Keywords

Comments

Zeros a(z)=0 occur at z=6, 60, 120, 360, 816,... For these z, A049417(z) | z^2, but there may be other numbers like 90, 180, 540,... satisfying this divisibility criterion which are not places of zeros (the criterion is necessary, not sufficient), see A185288.

Crossrefs

Formula

a(A050376(n)) = 1.

A185288 Numbers n for which the terms of the multiplicative sequence {n^2/A049417(n)} are integers.

Original entry on oeis.org

1, 6, 60, 90, 120, 180, 360, 540, 816, 840, 1080, 1740, 1980, 2280, 2520, 3060, 3960, 5712, 6120, 8280, 9540, 11880, 12240, 16920, 18360, 19260, 24480, 25296, 25560, 32760, 36720, 42840, 48960, 54672, 57240, 63700, 73440, 74256, 84360, 85680, 97920, 103320, 115560
Offset: 1

Views

Author

Vladimir Shevelev, Feb 20 2011

Keywords

Comments

The sequence contains all infinitary perfect numbers (see A007357).

Examples

			Let n=120. Its representation over distinct terms of A050376 is 2*3*4*5. Therefore A049417(n)=(2+1)*(3+1)*(4+1)*(5+1)=360. Since 360 is a divisor of 120^2, 120 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    fun[p_, e_] := Module[{b = IntegerDigits[e, 2]}, m = Length[b]; Product[If[b[[j]] > 0, 1 + p^(2^(m - j)), 1], {j, 1, m}]]; isigma[1] = 1; isigma[n_] := Times @@ fun @@@ FactorInteger[n]; aQ[n_] := Divisible[n^2, isigma[n]]; Select[Range[58000], aQ] (* Amiram Eldar, Jul 21 2019 *)

Extensions

More terms from Nathaniel Johnston, Mar 16 2011
More terms from Amiram Eldar, Jul 21 2019

A186970 The oex analog of the Euler phi-function for the oex prime power factorization of positive integers.

Original entry on oeis.org

1, 1, 2, 3, 4, 3, 6, 4, 8, 5, 10, 7, 12, 8, 9, 12, 16, 11, 18, 12, 14, 14, 22, 9, 24, 16, 18, 18, 28, 13, 30, 16, 22, 21, 25, 24, 36, 24, 27, 17, 40, 17, 42, 30, 33, 29, 46, 27, 48, 32, 36, 36, 52, 24, 42, 25, 40, 37, 58, 28, 60, 40, 49, 48, 50, 30, 66, 48, 49, 35, 70, 32, 72, 48, 54, 54, 61, 36
Offset: 1

Views

Author

Vladimir Shevelev, Mar 01 2011

Keywords

Comments

Oex divisors d of an integer n are defined in A186443: those divisors d which are either 1 or numbers such that d^k || n (the highest power of d dividing n) has odd exponent k.
A positive number is called an oex prime if it has only two oex divisors; since every n >= 2 has at least two oex divisors, 1 and n, an oex prime q has only oex divisors 1 and q. A000430 is the sequence of oex primes q, i.e., A186643(q) = 2 iff q is an entry in A000430.
A unique factorization, called an oex prime power factorization, of integers n is introduced as follows: each factor p^e in the conventional prime power factorization n = Product(p^e) is written as (p^2)^(e/2) if e is even, and as (p^2)^floor(e/2)*p if e is odd. This represents n as a product of oex primes of the type q=p^2, with unconstrained exponents e/2, and of oex primes of the type q=p with exponents 0 or 1. (This is similar to splitting n into its squarefree part A007913(n) times A008833(n), followed by an ordinary prime factorization in both parts separately.)
Let n = q_1^a_1*q_2^a_2*... and m = q_1^b_1*q_2^b_2*..., a_i,b_i >= 0 be the oex prime power factorizations of n and m. Define the oex GCD of n and m as [n,m] = q_1^min(a_1,b_1) * q_2^min(a_2,b_2) * .... Then a(n) = Sum_{m=1..n, [m,n]=1} 1, the oex analog of the Euler-phi function.

Examples

			The oex prime power factorization of 16 is 4^2. Since [16,i]=1 for i=1, 2, 3, 5, 6, 7, 9, 10, 11, 13, 14, and 15, a(16)=12.
The oex prime power factorization of 9 is 9. Thus a(9)=8.
		

Crossrefs

Programs

  • Maple
    highpp := proc(n,d) local nshf,a ; if n mod d <> 0 then 0; else nshf := n ; a := 0 ; while nshf mod d = 0 do nshf := nshf /d ; a := a+1 ; end do: a; end if; end proc:
    oexgcd := proc(n,m) local a,p,kn,km ; a := 1 ; for p in numtheory[factorset](n) do kn := highpp(n,p) ; km := highpp(m,p) ; if type(kn,'even') = type(km,'even') then ; else kn := 2*floor(kn/2) ; km := 2*floor(km/2) ; end if; a := a*p^min(kn,km) ; end do: a ; end proc:
    A186970 := proc(n) local a,i; a := 0 ; for i from 1 to n do if oexgcd(n,i) = 1 then a := a+1 ; end if; end do: a; end proc:
    seq(A186970(n),n=1..80) ; # R. J. Mathar, Mar 18 2011

Formula

Let core(n) = p_1*...*p_r = A007913(n), n/core(n) = A008833(n) = q_1^c_1*...*q_t^c_t, where q_i are squares of primes.
If core(n)=1, then a(n) = n*Product_{j=1..r} (1-1/q_i); if core(n) tends to infinity, then a(n) ~ n * core(n) * Product_{i=1..t} (1-1/q_i) / Product_{j=1..r} (1+p_j).
a(n) <= A064380(n).
Previous Showing 21-27 of 27 results.