A064379
Irregular triangle whose n-th row is a list of numbers that are infinitarily relatively prime to n (n = 2, 3, ...).
Original entry on oeis.org
1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 4, 5, 1, 2, 3, 4, 5, 6, 1, 3, 5, 7, 1, 2, 3, 4, 5, 6, 7, 8, 1, 3, 4, 7, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1, 2, 5, 7, 9, 10, 11, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 1, 3, 4, 5, 9, 11, 12, 13, 1, 2, 4, 7, 8, 9, 11, 13, 14, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14
Offset: 2
irelprime[6] = {1, 4, 5} because iDivisors[6] = {1, 2, 3, 6} and iDivisors[4] = {1, 4} so 4 is infinitary_relatively_prime to 6 since it lacks common infinitary divisors with 6.
For n = 2 ..8 irelprime[n] gives {1}, {1,2}, {1,2,3}, {1,2,3,4}, {1,4,5}, {1,2,3,4,5,6}, {1,3,5,7}.
Triangle starts:
2: 1;
3: 1, 2;
4: 1, 2, 3;
5: 1, 2, 3, 4;
6: 1, 4, 5;
7: 1, 2, 3, 4, 5, 6;
8: 1, 3, 5, 7;
9: 1, 2, 3, 4, 5, 6, 7, 8;
10: 1, 3, 4, 7, 9;
11: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10;
12: 1, 2, 5, 7, 9, 10, 11;
13: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12;
14: 1, 3, 4, 5, 9, 11, 12, 13;
15: 1, 2, 4, 7, 8, 9, 11, 13, 14;
-
irelprime[ n_ ] := Select[ temp=iDivisors[ n ]; Range[ n ], Intersection[ iDivisors[ # ], temp ]==={1}& ]; (* with iDivisors of n as *) bitty[ k_ ] := Union[ Flatten[ Outer[ Plus, Sequence@@{0, #1}&/@Union[ 2^Range[ 0, Floor[ Log[ 2, k ] ] ]*Reverse[ IntegerDigits[ k, 2 ] ] ] ] ] ]; iDivisors[ k_Integer ] := Sort[ (Times @@(First[ it ]^(#1/.z-> List))&)/@Flatten[ Outer[ z, Sequence@@bitty/@Last[ it=Transpose[ FactorInteger[ k ] ] ], 1 ] ] ]; iDivisors[ 1 ] := {1};
infCoprimeQ[n1_, n2_] := Module[{g = GCD[n1, n2]}, If[g == 1, True, AllTrue[ FactorInteger[g][[;; , 1]], BitAnd @@ IntegerExponent[{n1, n2}, #] == 0 &]]]; row[n_] := Select[Range[n - 1], infCoprimeQ[#, n] &]; Table[row[n], {n, 2, 16}] // Flatten (* Amiram Eldar, Mar 26 2023 *)
-
isinfcoprime(n1, n2) = {my(g = gcd(n1, n2), p, e1, e2); if(g == 1,return(1)); p = factor(g)[, 1]; for(i=1, #p, e1 = valuation(n1, p[i]); e2 = valuation(n2, p[i]); if(bitand(e1, e2) > 0, return(0))); 1; }
row(n) = select(x->isinfcoprime(x, n), vector(n-1, i, i)); \\ Amiram Eldar, Mar 26 2023
A177333
Smallest factor in the factorization of n! over distinct terms of A050376.
Original entry on oeis.org
2, 2, 2, 2, 5, 5, 2, 2, 7, 7, 3, 3, 2, 2, 2, 2, 5, 5, 4, 3, 2, 2, 4, 4, 2, 2, 2, 2, 4, 4, 2, 2, 3, 3, 3, 3, 2, 2, 4, 4, 2, 2, 2, 2, 3, 3, 4, 4, 2, 2, 2, 2, 4, 4, 2, 2, 3, 3, 7, 7, 2, 2, 2, 2, 3, 3, 3, 4, 2, 2, 4, 4, 2, 2, 2, 2, 4, 4, 4, 4, 2, 2, 2, 2, 3, 4, 2, 2, 4, 4, 5, 3, 2, 2, 4, 4, 2, 2, 2, 2, 3, 3, 2, 2, 4
Offset: 2
The factorization of 10! = 3628800 is 2^8*3^4*5^2*7^1, where 2^8 > 3^4 > 5^2 > 7, so a(10)=7 is the smallest of these 4 factors.
- V. S. Shevelev, Multiplicative functions in the Fermi-Dirac arithmetic, Izvestia Vuzov of the North-Caucasus region, Nature sciences 4 (1996), 28-43 [Russian].
-
A177333 := proc(n) local a,p,pow2 ; a := n! ; for p in ifactors(n!)[2] do pow2 := convert( op(2,p),base,2) ; for j from 1 to nops(pow2) do if op(j,pow2) <> 0 then a := min(a,op(1,p)^(2^(j-1))) ; end if; end do: end do: return a ; end proc:
seq(A177333(n),n=2..120) ; # R. J. Mathar, Jun 16 2010
-
b[n_] :=2^(-1+Position[ Reverse@IntegerDigits[n, 2],?(#==1&)])//Flatten; a[n] := Module[{np = PrimePi[n]}, v=Table[0,{np}]; Do[p = Prime[k]; Do[v[[k]] += IntegerExponent[j, p], {j,2,n}], {k,1,np}]; Min[(Prime/@Range[np])^(b/@v) // Flatten]]; Array[a, 105, 2] (* Amiram Eldar, Sep 17 2019 *)
Corrected from a(10) on and extended beyond a(30) by
R. J. Mathar, Jun 16 2010
A177334
Largest factor in the factorization of n! over distinct terms of A050376.
Original entry on oeis.org
2, 3, 4, 5, 16, 16, 16, 81, 256, 256, 256, 256, 256, 256, 256, 256, 65536, 65536, 65536, 65536, 65536, 65536, 65536, 65536, 65536, 65536, 65536, 65536, 65536, 65536, 65536, 65536, 4294967296, 4294967296, 4294967296, 4294967296, 4294967296, 4294967296
Offset: 2
- V. S. Shevelev, Multiplicative functions in the Fermi-Dirac arithmetic, Izvestia Vuzov of the North-Caucasus region, Nature sciences 4 (1996), 28-43 [Russian].
-
A177334 := proc(n) local a,p,pow2 ; a := 1 ; for p in ifactors(n!)[2] do pow2 := convert( op(2,p),base,2) ; for j from 1 to nops(pow2) do if op(j,pow2) <> 0 then a := max(a,op(1,p)^(2^(j-1))) ; end if; end do: end do: return a ; end proc:
seq(A177334(n),n=2..60) ; # R. J. Mathar, Jun 16 2010
-
b[n_] :=2^(-1+Position[ Reverse@IntegerDigits[n, 2],?(#==1&)])//Flatten; a[n] := Module[{np = PrimePi[n]}, v=Table[0,{np}]; Do[p = Prime[k]; Do[v[[k]] += IntegerExponent[j, p], {j,2,n}], {k,1,np}]; Max[(Prime/@Range[np])^(b/@v) // Flatten]]; Array[a, 38, 2] (* Amiram Eldar, Sep 17 2019 *)
a(18) and a(19) corrected and sequence extended by
R. J. Mathar, Jun 16 2010
A176525
Fermi-Dirac semiprimes: products of two distinct terms of A050376.
Original entry on oeis.org
6, 8, 10, 12, 14, 15, 18, 20, 21, 22, 26, 27, 28, 32, 33, 34, 35, 36, 38, 39, 44, 45, 46, 48, 50, 51, 52, 55, 57, 58, 62, 63, 64, 65, 68, 69, 74, 75, 76, 77, 80, 82, 85, 86, 87, 91, 92, 93, 94, 95, 98, 99, 100, 106, 111, 112, 115, 116, 117, 118, 119, 122
Offset: 1
- Vladimir S. Shevelev, Multiplicative functions in the Fermi-Dirac arithmetic, Izvestia Vuzov of the North-Caucasus region, Nature sciences, Vol. 4 (1996), pp. 28-43 [Russian].
-
Select[Range[120], Plus @@ DigitCount[Last /@ FactorInteger[#], 2, 1] == 2 &] (* Amiram Eldar, Nov 27 2020 *)
Effectively duplicate content (due to duplicate referenced sequence) removed by
Peter Munn, Dec 19 2019
Original entry on oeis.org
1, 1, 1, 1, 0, 1, 4, 1, 10, 1, 4, 1, 4, 9, 1, 1, 6, 1, 10, 7, 20, 1, 24, 1, 4, 9, 24, 1, 36, 1, 4, 33, 22, 25, 4, 1, 4, 9, 20, 1, 132, 1, 16, 45, 28, 1, 8, 1, 4, 9, 26, 1, 36, 1, 104, 49, 34, 1, 0, 1, 4, 49, 16, 25, 36, 1, 34, 57, 140, 1, 84, 1, 4, 9, 76, 73, 36, 1, 26, 1, 80, 1, 16, 11, 128, 9, 4, 1, 180, 105, 64, 55, 92, 25, 36
Offset: 2
A185288
Numbers n for which the terms of the multiplicative sequence {n^2/A049417(n)} are integers.
Original entry on oeis.org
1, 6, 60, 90, 120, 180, 360, 540, 816, 840, 1080, 1740, 1980, 2280, 2520, 3060, 3960, 5712, 6120, 8280, 9540, 11880, 12240, 16920, 18360, 19260, 24480, 25296, 25560, 32760, 36720, 42840, 48960, 54672, 57240, 63700, 73440, 74256, 84360, 85680, 97920, 103320, 115560
Offset: 1
Let n=120. Its representation over distinct terms of A050376 is 2*3*4*5. Therefore A049417(n)=(2+1)*(3+1)*(4+1)*(5+1)=360. Since 360 is a divisor of 120^2, 120 is in the sequence.
-
fun[p_, e_] := Module[{b = IntegerDigits[e, 2]}, m = Length[b]; Product[If[b[[j]] > 0, 1 + p^(2^(m - j)), 1], {j, 1, m}]]; isigma[1] = 1; isigma[n_] := Times @@ fun @@@ FactorInteger[n]; aQ[n_] := Divisible[n^2, isigma[n]]; Select[Range[58000], aQ] (* Amiram Eldar, Jul 21 2019 *)
A186970
The oex analog of the Euler phi-function for the oex prime power factorization of positive integers.
Original entry on oeis.org
1, 1, 2, 3, 4, 3, 6, 4, 8, 5, 10, 7, 12, 8, 9, 12, 16, 11, 18, 12, 14, 14, 22, 9, 24, 16, 18, 18, 28, 13, 30, 16, 22, 21, 25, 24, 36, 24, 27, 17, 40, 17, 42, 30, 33, 29, 46, 27, 48, 32, 36, 36, 52, 24, 42, 25, 40, 37, 58, 28, 60, 40, 49, 48, 50, 30, 66, 48, 49, 35, 70, 32, 72, 48, 54, 54, 61, 36
Offset: 1
The oex prime power factorization of 16 is 4^2. Since [16,i]=1 for i=1, 2, 3, 5, 6, 7, 9, 10, 11, 13, 14, and 15, a(16)=12.
The oex prime power factorization of 9 is 9. Thus a(9)=8.
-
highpp := proc(n,d) local nshf,a ; if n mod d <> 0 then 0; else nshf := n ; a := 0 ; while nshf mod d = 0 do nshf := nshf /d ; a := a+1 ; end do: a; end if; end proc:
oexgcd := proc(n,m) local a,p,kn,km ; a := 1 ; for p in numtheory[factorset](n) do kn := highpp(n,p) ; km := highpp(m,p) ; if type(kn,'even') = type(km,'even') then ; else kn := 2*floor(kn/2) ; km := 2*floor(km/2) ; end if; a := a*p^min(kn,km) ; end do: a ; end proc:
A186970 := proc(n) local a,i; a := 0 ; for i from 1 to n do if oexgcd(n,i) = 1 then a := a+1 ; end if; end do: a; end proc:
seq(A186970(n),n=1..80) ; # R. J. Mathar, Mar 18 2011
Comments