cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A054725 a(1)=1; a(n) = Sum_{p | n} e * a(p-1), where sum is over all primes p that divide n, and e is the multiplicity of p in n.

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 2, 3, 2, 3, 3, 3, 3, 3, 3, 4, 4, 3, 3, 4, 3, 4, 4, 4, 4, 4, 3, 4, 4, 4, 4, 5, 4, 5, 4, 4, 4, 4, 4, 5, 5, 4, 4, 5, 4, 5, 5, 5, 4, 5, 5, 5, 5, 4, 5, 5, 4, 5, 5, 5, 5, 5, 4, 6, 5, 5, 5, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 4, 6, 6, 5, 6, 5, 5, 6, 6, 5, 5, 6, 5, 6, 5, 6, 6, 5, 5, 6, 6, 6, 6, 6
Offset: 1

Views

Author

Leroy Quet, Apr 20 2000

Keywords

Examples

			a(20) = a(2-1) + a(2-1) + a(5-1) = 1 + 1 +2 = 4 because 20 = 2*2*5.
		

Programs

  • Mathematica
    Fold[Append[#1, Total@ Table[#1[[p - 1]], {p, Flatten@ Map[ConstantArray[#1, #2] & @@ # &, FactorInteger[#2]]}]] &, {1}, Range[2, 105]] (* Michael De Vlieger, Dec 11 2017 *)
  • PARI
    a(n)=if (n<=1, 1, my(F=factor(n)); sum(e=1, #F[,1], F[e,2] * a(F[e,1]-1) ) );
    vector(200, n, a(n)) \\ Joerg Arndt, Apr 08 2014

Formula

a(1) = 1 and a(n) = A064415(n) for n>=2. [Joerg Arndt, Apr 08 2014]

Extensions

Title clarified by Sean A. Irvine, Feb 18 2022

A334097 a(n) is the exponent of the eventual power of 2 reached when starting from n and using the map k -> k + k/p, where p can be any odd prime factor of k, for example, the largest.

Original entry on oeis.org

0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 4, 5, 5, 5, 5, 5, 5, 5, 5, 6, 5, 6, 5, 6, 6, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 6, 6, 6, 6, 7, 7, 6, 7, 7, 7, 6, 7, 7, 7, 7, 6, 6, 7, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 7, 7, 7, 7, 7, 8, 7, 7, 7, 8, 7, 8, 7, 8, 8, 7, 7, 7, 7, 8, 7, 7, 7, 8, 8, 8, 8, 7, 7, 8
Offset: 1

Views

Author

Antti Karttunen, Apr 29 2020

Keywords

Crossrefs

Cf. also A064415 (analogous sequence when using the map k -> k - k/p).

Programs

  • Mathematica
    Array[Log2@ NestWhile[# + #/FactorInteger[#][[-1, 1]] &, #, !IntegerQ@ Log2@ # &] &, 105] (* Michael De Vlieger, Apr 30 2020 *)
  • PARI
    A334097(n) = if(!bitand(n,n-1),valuation(n,2),my(f=factor(n)[, 1]); A334097(n+(n/f[2-(n%2)])));
    
  • PARI
    A334097(n) = if(!bitand(n,n-1),valuation(n,2),A334097(n+(n/vecmax(factor(n)[, 1]))));
    
  • PARI
    A334097(n) = { my(f=factor(n)); sum(k=1,#f~,if(2==f[k,1],f[k,2],f[k,2]*A334097(1+f[k,1]))); };

Formula

Totally additive sequence: a(2) = 1, a(p) = a(p+1) for odd primes p, a(m*n) = a(m)+a(n) for m, n > 1.
If A209229(n) == 1, a(n) = A007814(n), otherwise a(n) = a(n+A052126(n)), or equally, a(n) = a(n+(n/A078701(n))).
a(n) = A331410(n) + A334098(n) = A334862(n) + A064415(n).

A309243 Completely multiplicative with a(p) = p * a(p-1) for any prime number p.

Original entry on oeis.org

1, 2, 6, 4, 20, 12, 84, 8, 36, 40, 440, 24, 312, 168, 120, 16, 272, 72, 1368, 80, 504, 880, 20240, 48, 400, 624, 216, 336, 9744, 240, 7440, 32, 2640, 544, 1680, 144, 5328, 2736, 1872, 160, 6560, 1008, 43344, 1760, 720, 40480, 1902560, 96, 7056, 800, 1632, 1248
Offset: 1

Views

Author

Rémy Sigrist, Jul 17 2019

Keywords

Comments

All terms are distinct and belong to A064522.

Examples

			a(2) = 2 * a(1) = 2.
a(5) = 5 * a(4) = 5 * a(2)^2 = 5 * 2^2 = 20.
		

Crossrefs

Programs

  • PARI
    a(n) = my (f=factor(n), p=f[,1]~, e=f[,2]~); prod (i=1, #p, (p[i] * a(p[i] - 1))^e[i])

Formula

a(n) >= n with equality iff n is a power of 2.
a(n) is a multiple of n.
a(n) is a multiple of A000010(n).
A006530(a(n)) = A006530(n).
A053585(a(n)) = A053585(n).
Apparently, A007814(a(n)) = A064415(n).
Previous Showing 11-13 of 13 results.