cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A372887 Number of integer partitions of n whose distinct parts are the binary indices of some prime number.

Original entry on oeis.org

0, 0, 1, 1, 3, 3, 6, 8, 12, 14, 21, 29, 36, 48, 56, 74, 94, 123, 144, 195, 235, 301, 356, 456, 538, 679, 803, 997, 1189, 1467, 1716, 2103, 2488, 2968, 3517, 4185, 4907, 5834, 6850, 8032, 9459, 11073, 12933, 15130, 17652, 20480, 24011, 27851, 32344, 37520
Offset: 0

Views

Author

Gus Wiseman, May 19 2024

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.
Note the inverse of A048793 (binary indices) takes a set s to Sum_i 2^(s_i-1).

Examples

			The partition y = (4,3,1,1) has distinct parts {1,3,4}, which are the binary indices of 13, which is prime, so y is counted under a(9).
The a(2) = 1 through a(9) = 14 partitions:
  (2)  (21)  (22)   (221)   (51)     (331)     (431)      (3321)
             (31)   (311)   (222)    (421)     (521)      (4221)
             (211)  (2111)  (321)    (511)     (2222)     (4311)
                            (2211)   (2221)    (3221)     (5211)
                            (3111)   (3211)    (3311)     (22221)
                            (21111)  (22111)   (4211)     (32211)
                                     (31111)   (5111)     (33111)
                                     (211111)  (22211)    (42111)
                                               (32111)    (51111)
                                               (221111)   (222111)
                                               (311111)   (321111)
                                               (2111111)  (2211111)
                                                          (3111111)
                                                          (21111111)
		

Crossrefs

For odd instead of prime we have A000041, even A002865.
The strict case is A372687, ranks A372851.
Counting not just distinct parts gives A372688, ranks A277319.
These partitions have Heinz numbers A372850.
A014499 lists binary indices of prime numbers.
A019565 gives Heinz number of binary indices, adjoint A048675.
A058698 counts partitions of prime numbers, strict A064688.
A372689 lists numbers whose binary indices sum to a prime.
A372885 lists primes whose binary indices sum to a prime, indices A372886.
Binary indices:
- listed A048793, sum A029931
- reversed A272020
- opposite A371572, sum A230877
- length A000120, complement A023416
- min A001511, opposite A000012
- max A070939, opposite A070940
- complement A368494, sum A359400
- opposite complement A371571, sum A359359

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], PrimeQ[Total[2^(Union[#]-1)]]&]],{n,0,30}]

A316154 Number of integer partitions of prime(n) into a prime number of prime parts.

Original entry on oeis.org

0, 0, 1, 2, 3, 5, 9, 12, 19, 39, 50, 93, 136, 166, 239, 409, 682, 814, 1314, 1774, 2081, 3231, 4272, 6475, 11077, 14270, 16265, 20810, 23621, 30031, 68251, 85326, 118917, 132815, 226097, 251301, 342448, 463940, 565844, 759873, 1015302, 1117708, 1787452, 1961624
Offset: 1

Views

Author

Gus Wiseman, Jun 25 2018

Keywords

Examples

			The a(7) = 9 partitions of 17 into a prime number of prime parts: (13,2,2), (11,3,3), (7,7,3), (7,5,5), (7,3,3,2,2), (5,5,3,2,2), (5,3,3,3,3), (5,2,2,2,2,2,2), (3,3,3,2,2,2,2).
		

Crossrefs

Programs

  • Maple
    b:= proc(n, p, c) option remember; `if`(n=0 or p=2,
          `if`(n::even and isprime(c+n/2), 1, 0),
          `if`(p>n, 0, b(n-p, p, c+1))+b(n, prevprime(p), c))
        end:
    a:= n-> b(ithprime(n)$2, 0):
    seq(a(n), n=1..50);  # Alois P. Heinz, Jun 26 2018
  • Mathematica
    Table[Length[Select[IntegerPartitions[Prime[n]],And[PrimeQ[Length[#]],And@@PrimeQ/@#]&]],{n,20}]
    (* Second program: *)
    b[n_, p_, c_] := b[n, p, c] = If[n == 0 || p == 2, If[EvenQ[n] && PrimeQ[c + n/2], 1, 0], If[p>n, 0, b[n - p, p, c + 1]] + b[n, NextPrime[p, -1], c]];
    a[n_] := b[Prime[n], Prime[n], 0];
    Array[a, 50] (* Jean-François Alcover, May 20 2021, after Alois P. Heinz *)
  • PARI
    seq(n)={my(p=vector(n,k,prime(k))); my(v=Vec(1/prod(k=1, n, 1 - x^p[k]*y + O(x*x^p[n])))); vector(n, k, sum(i=1, k, polcoeff(v[1+p[k]], p[i])))} \\ Andrew Howroyd, Jun 26 2018

Formula

a(n) = A085755(A000040(n)). - Alois P. Heinz, Jun 26 2018

Extensions

Terms a(21) and beyond from Andrew Howroyd, Jun 26 2018

A316185 Number of strict integer partitions of the n-th prime into a prime number of prime parts.

Original entry on oeis.org

0, 0, 1, 1, 0, 1, 0, 2, 2, 3, 5, 5, 6, 8, 10, 13, 18, 20, 26, 32, 34, 45, 54, 66, 90, 106, 117, 135, 142, 165, 269, 311, 375, 398, 546, 579, 689, 823, 938, 1107, 1301, 1352, 1790, 1850, 2078, 2153, 2878, 3811, 4241, 4338, 4828, 5495, 5637, 7076, 8000, 9032
Offset: 1

Views

Author

Gus Wiseman, Jun 25 2018

Keywords

Examples

			The a(14) = 8 partitions of 43 into a prime number of distinct prime parts: (41,2), (31,7,5), (29,11,3), (23,17,3), (23,13,7), (19,17,7), (19,13,11), (17,11,7,5,3).
		

Crossrefs

Programs

  • Maple
    h:= proc(n) option remember; `if`(n=0, 0,
         `if`(isprime(n), n, h(n-1)))
        end:
    b:= proc(n, i, c) option remember; `if`(n=0,
          `if`(isprime(c), 1, 0), `if`(i<2, 0, b(n, h(i-1), c)+
          `if`(i>n, 0, b(n-i, h(min(n-i, i-1)), c+1))))
        end:
    a:= n-> b(ithprime(n)$2, 0):
    seq(a(n), n=1..56);  # Alois P. Heinz, May 26 2021
  • Mathematica
    Table[Length[Select[IntegerPartitions[Prime[n]],And[UnsameQ@@#,PrimeQ[Length[#]],And@@PrimeQ/@#]&]],{n,10}]
    (* Second program: *)
    h[n_] := h[n] = If[n == 0, 0, If[PrimeQ[n], n, h[n - 1]]];
    b[n_, i_, c_] := b[n, i, c] = If[n == 0,
         If[PrimeQ[c], 1, 0], If[i < 2, 0, b[n, h[i - 1], c] +
         If[i > n, 0, b[n - i, h[Min[n - i, i - 1]], c + 1]]]];
    a[n_] := b[Prime[n], Prime[n], 0];
    Array[a, 56] (* Jean-François Alcover, Jun 11 2021, after Alois P. Heinz *)
  • PARI
    seq(n)={my(p=vector(n, k, prime(k))); my(v=Vec(prod(k=1, n, 1 + x^p[k]*y + O(x*x^p[n])))); vector(n, k, sum(i=1, k, polcoeff(v[1+p[k]], p[i])))} \\ Andrew Howroyd, Jun 26 2018

Formula

a(n) = A045450(A000040(n)).

Extensions

More terms from Alois P. Heinz, Jun 26 2018

A316153 Heinz numbers of integer partitions of prime numbers into a prime number of prime parts.

Original entry on oeis.org

15, 33, 45, 93, 153, 177, 275, 327, 369, 405, 425, 537, 603, 605, 775, 831, 891, 1025, 1059, 1125, 1413, 1445, 1475, 1641, 1705, 1719, 1761, 2057, 2075, 2319, 2511, 2577, 2979, 3175, 3179, 3189, 3459, 3485, 3603, 3609, 3825, 3925, 4299, 4475, 4497, 4565, 4581
Offset: 1

Views

Author

Gus Wiseman, Jun 25 2018

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			Sequence of integer partitions of prime numbers into a prime number of prime parts, preceded by their Heinz numbers, begins:
   15: (3,2)
   33: (5,2)
   45: (3,2,2)
   93: (11,2)
  153: (7,2,2)
  177: (17,2)
  275: (5,3,3)
  327: (29,2)
  369: (13,2,2)
  405: (3,2,2,2,2)
  425: (7,3,3)
  537: (41,2)
  603: (19,2,2)
  605: (5,5,3)
  775: (11,3,3)
  831: (59,2)
  891: (5,2,2,2,2)
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[1000],And[PrimeQ[PrimeOmega[#]],PrimeQ[Total[primeMS[#]]],And@@PrimeQ/@primeMS[#]]&]

A316151 Heinz numbers of strict integer partitions of prime numbers into prime parts.

Original entry on oeis.org

3, 5, 11, 15, 17, 31, 33, 41, 59, 67, 83, 93, 109, 127, 157, 177, 179, 191, 211, 241, 277, 283, 327, 331, 353, 367, 401, 431, 461, 509, 537, 547, 563, 587, 599, 617, 709, 739, 773, 797, 831, 859, 877, 919, 967, 991, 1031, 1059, 1063, 1087, 1153, 1171, 1201
Offset: 1

Views

Author

Gus Wiseman, Jun 25 2018

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			Sequence of strict integer partitions of prime numbers into prime parts, preceded by their Heinz numbers, begins:
   3: (2)
   5: (3)
  11: (5)
  15: (3,2)
  17: (7)
  31: (11)
  33: (5,2)
  41: (13)
  59: (17)
  67: (19)
  83: (23)
  93: (11,2)
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],And[SquareFreeQ[#],PrimeQ[Total[primeMS[#]]],And@@PrimeQ/@primeMS[#]]&]
Previous Showing 11-15 of 15 results.