A065303
Neither n nor sigma(n) is squarefree.
Original entry on oeis.org
12, 24, 27, 28, 32, 40, 44, 48, 52, 54, 56, 60, 63, 68, 75, 76, 81, 84, 88, 90, 92, 96, 98, 99, 108, 112, 120, 124, 125, 126, 132, 135, 136, 140, 147, 150, 152, 153, 156, 160, 162, 164, 168, 171, 172, 175, 176, 184, 188, 189, 192, 198, 204, 207, 212, 216, 220
Offset: 1
n = 147 = 3*7*7, sigma(147) = 2*2*3*19 = 228.
-
Select[Range@ 220, Nor[SquareFreeQ@ #, SquareFreeQ@ DivisorSigma[1, #]] &] (* Michael De Vlieger, Mar 18 2017 *)
Select[Range[250],NoneTrue[{#,DivisorSigma[1,#]},SquareFreeQ]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Sep 22 2019 *)
-
n=0; for (m = 1, 10^9, if (!moebius(m) && !moebius(sigma(m)), write("b065303.txt", n++, " ", m); if (n==1000, return)) ) \\ Harry J. Smith, Oct 16 2009
-
sigmaSquarefree(f)=my(v=vector(#f~,i, (f[i,1]^(f[i,2]+1)-1) / (f[i,1]-1))); for(i=2,#v, for(j=1,i-1, if(gcd(v[i],v[j])>1, return(0)))); for(i=1,#v, if(!issquarefree(v[i]), return(0))); 1
list(lim)=my(v=List()); forfactored(k=12,lim\1, if(!issquarefree(k) && !sigmaSquarefree(k[2]), listput(v,k[1]))); Vec(v) \\ Charles R Greathouse IV, Jan 08 2018
-
from sympy import divisor_sigma
from sympy.ntheory.factor_ import core
def is_squarefree(n): return core(n) == n
print([i for i in range(1, 251) if not is_squarefree(i) and not is_squarefree(divisor_sigma(i,1))]) # Indranil Ghosh, Mar 18 2017
A375397
Numbers divisible by the square of some prime factor other than the least. Non-hooklike numbers.
Original entry on oeis.org
18, 36, 50, 54, 72, 75, 90, 98, 100, 108, 126, 144, 147, 150, 162, 180, 196, 198, 200, 216, 225, 234, 242, 245, 250, 252, 270, 288, 294, 300, 306, 324, 338, 342, 350, 360, 363, 375, 378, 392, 396, 400, 414, 432, 441, 450, 468, 484, 486, 490, 500, 504, 507, 522
Offset: 1
The prime factors of 300 are {2,2,3,5,5}, with maximal anti-runs ((2),(2,3,5),(5)), with minima (2,2,5), so 300 is in the sequence.
The terms together with their prime indices begin:
18: {1,2,2}
36: {1,1,2,2}
50: {1,3,3}
54: {1,2,2,2}
72: {1,1,1,2,2}
75: {2,3,3}
90: {1,2,2,3}
98: {1,4,4}
100: {1,1,3,3}
108: {1,1,2,2,2}
126: {1,2,2,4}
144: {1,1,1,1,2,2}
For distinct instead of identical minima we have
A375399, counts
A375404.
Partitions of this type are counted by
A375405.
Cf.
A000005,
A013661,
A046660,
A272919,
A319066,
A358905,
A374686,
A374704,
A374742,
A375133,
A375136,
A375401.
-
Select[Range[100],!SameQ@@Min /@ Split[Flatten[ConstantArray@@@FactorInteger[#]],UnsameQ]&]
-
is(k) = if(k > 1, my(e = factor(k)[, 2]); vecprod(e) > e[1], 0); \\ Amiram Eldar, Oct 26 2024
A375403
Numbers whose maximal anti-runs of weakly increasing prime factors (with multiplicity) do not have distinct maxima.
Original entry on oeis.org
4, 8, 9, 16, 18, 24, 25, 27, 32, 36, 40, 48, 49, 50, 54, 56, 64, 72, 75, 80, 81, 88, 96, 98, 100, 104, 108, 112, 120, 121, 125, 128, 135, 136, 144, 147, 150, 152, 160, 162, 168, 169, 176, 184, 189, 192, 196, 200, 208, 216, 224, 225, 232, 240, 242, 243, 245
Offset: 1
The maximal anti-runs of prime factors of 150 are ((2,3,5),(5)), with maxima (5,5), so 150 is in the sequence.
The maximal anti-runs of prime factors of 180 are ((2),(2,3),(3,5)), with maxima (2,3,5), so 180 is not in the sequence.
The maximal anti-runs of prime factors of 300 are ((2),(2,3,5),(5)), with maxima (2,5,5), so 300 is in the sequence.
The terms together with their prime indices begin:
4: {1,1}
8: {1,1,1}
9: {2,2}
16: {1,1,1,1}
18: {1,2,2}
24: {1,1,1,2}
25: {3,3}
27: {2,2,2}
32: {1,1,1,1,1}
36: {1,1,2,2}
40: {1,1,1,3}
48: {1,1,1,1,2}
For identical instead of distinct we have
A065201, complement
A065200.
Partitions of this type are counted by
A375401.
Cf.
A046660,
A066328,
A358836,
A374632,
A374706,
A374768,
A374767,
A375128,
A375136,
A375396,
A375400.
A375405
Number of integer partitions of n with a repeated part other than the least.
Original entry on oeis.org
0, 0, 0, 0, 0, 1, 1, 3, 5, 8, 13, 20, 29, 42, 62, 83, 117, 158, 214, 283, 377, 488, 641, 823, 1058, 1345, 1714, 2154, 2713, 3387, 4222, 5230, 6474, 7959, 9782, 11956, 14591, 17737, 21529, 26026, 31422, 37811, 45425, 54418, 65097, 77652, 92510, 109943, 130468
Offset: 0
The a(0) = 0 through a(10) = 13 partitions:
. . . . . (221) (2211) (331) (332) (441) (442)
(2221) (3221) (3321) (3322)
(22111) (3311) (4221) (3331)
(22211) (22221) (4411)
(221111) (32211) (5221)
(33111) (32221)
(222111) (33211)
(2211111) (42211)
(222211)
(322111)
(331111)
(2221111)
(22111111)
The complement for maxima instead of minima is
A034296.
These partitions have ranks
A375397.
A055887 counts sequences of partitions with total sum n.
A375128 lists minima of maximal anti-runs of prime indices, sums
A374706.
-
Table[Length[Select[IntegerPartitions[n], !SameQ@@Min/@Split[#,UnsameQ]&]],{n,0,30}]
- or -
Table[Length[Select[IntegerPartitions[n], !UnsameQ@@DeleteCases[#,Min@@#]&]],{n,0,30}]
-
A_x(N) = {my(x='x+O('x^N), f=sum(i=1,N,sum(j=i+1,N-i, ((x^(i+(2*j)))/(1-x^i))*prod(k=i+1,N-i-(2*j), if(kJohn Tyler Rascoe, Aug 21 2024
Comments