cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A377818 Powerful numbers that have a single even exponent in their prime factorization.

Original entry on oeis.org

4, 9, 16, 25, 49, 64, 72, 81, 108, 121, 169, 200, 256, 288, 289, 361, 392, 432, 500, 529, 625, 648, 675, 729, 800, 841, 961, 968, 972, 1024, 1125, 1152, 1323, 1352, 1369, 1372, 1568, 1681, 1728, 1849, 2000, 2209, 2312, 2401, 2592, 2809, 2888, 3087, 3200, 3267, 3481
Offset: 1

Views

Author

Amiram Eldar, Nov 09 2024

Keywords

Comments

Each term can be represented in a unique way as m * p^(2*k), k >= 1, where m is a cubefull exponentially odd number (A335988) and p is a prime that does not divide m.
Powerful numbers k such that A350388(k) is a prime power with an even positive exponent (A056798 \ {1}).

Crossrefs

Intersection of A001694 and A377816.
Subsequence of A377819.

Programs

  • Mathematica
    With[{max = 3500}, Select[Union@ Flatten@ Table[i^2 * j^3, {j, 1, max^(1/3)}, {i, 1, Sqrt[max/j^3]}], Count[FactorInteger[#][[;; , 2]], _?EvenQ] == 1 &]]
  • PARI
    is(k) = if(k == 1, 0, my(e = factor(k)[, 2]); vecmin(e) > 1 && #select(x -> !(x%2), e) == 1);

Formula

Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + 1/(p*(p^2-1))) * Sum_{p prime} (p/(p^3-p+1)) = 0.61399274770712398109... .

A366764 The sum of divisors of n that have no exponent 2 in their prime factorization.

Original entry on oeis.org

1, 3, 4, 3, 6, 12, 8, 11, 4, 18, 12, 12, 14, 24, 24, 27, 18, 12, 20, 18, 32, 36, 24, 44, 6, 42, 31, 24, 30, 72, 32, 59, 48, 54, 48, 12, 38, 60, 56, 66, 42, 96, 44, 36, 24, 72, 48, 108, 8, 18, 72, 42, 54, 93, 72, 88, 80, 90, 60, 72, 62, 96, 32, 123, 84, 144, 68
Offset: 1

Views

Author

Amiram Eldar, Oct 21 2023

Keywords

Comments

The sum of terms of A337050 that divide n.
The number of these divisors is A366763(n), and the largest of them is A366765(n).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p^(e + 1) - 1)/(p - 1) - p^2; f[p_, 1] := p + 1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,2] == 1, f[i, 1] + 1, (f[i, 1]^(f[i,2] + 1) - 1)/(f[i, 1] - 1) - f[i, 1]^2));}

Formula

Multiplicative with a(p) = p + 1, and a(p^e) = (p^(e+1) - 1)/(p - 1) - p^2 for e >= 2.
a(n) <= A000203(n), with equality if and only if n is squarefree (A005117).
a(n) >= A034448(n), with equality if and only if n is cubefree (A004709).
Dirichlet g.f.: zeta(s-1) * zeta(s) * Product_{p prime} (1 - 1/p^(2*s-2) + 1/p^(3*s-3)).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = Product_{p prime} (1 + 1/(p^3-p)) = 1.231291... (A065487).

A376217 Powerful numbers whose sum of powerful divisors (including 1) is even.

Original entry on oeis.org

9, 25, 36, 49, 72, 81, 100, 121, 144, 169, 196, 200, 225, 288, 289, 324, 361, 392, 400, 441, 484, 529, 576, 625, 648, 675, 676, 729, 784, 800, 841, 900, 961, 968, 1089, 1125, 1152, 1156, 1225, 1296, 1323, 1352, 1369, 1444, 1521, 1568, 1600, 1681, 1764, 1800, 1849, 1936
Offset: 1

Views

Author

Amiram Eldar, Sep 16 2024

Keywords

Comments

The primitive terms of A376216: all the terms of A376216 are of the form k*m, where m is a term of this sequence and k is a squarefree number that is coprime to m.
Powerful numbers that have at least one odd prime factor in their prime factorization that has an even exponent.
Equivalently, powerful numbers whose odd part (A000265) is not an exponentially odd number (A268335).

Crossrefs

Intersection of A001694 and A376216.

Programs

  • Mathematica
    q[n_] := Module[{f = FactorInteger[n], i = 2 - Mod[n, 2]}, AllTrue[f[[;;, 2]], # > 1 &] && AnyTrue[f[[i;;-1, 2]], EvenQ]]; Select[Range[2000], q]
  • PARI
    is(k) = {my(f = factor(k), i = 1 + !(k % 2)); ispowerful(f) && #select(x -> !(x%2), f[i..#f~,2]) > 0;}

Formula

Sum_{n>=1} 1/a(n) = zeta(2)*zeta(3)/zeta(6) - (9/7) * Product_{p prime} (1 + 1/(p*(p^2-1))) = A082695 - (9/7) * A065487 = 0.36050781682112605291... .

A381825 Odd cubefull exponentially odd numbers: numbers whose prime factorization has only odd primes and odd exponents that are larger than 1 (except for 1 whose prime factorization is empty).

Original entry on oeis.org

1, 27, 125, 243, 343, 1331, 2187, 2197, 3125, 3375, 4913, 6859, 9261, 12167, 16807, 19683, 24389, 29791, 30375, 35937, 42875, 50653, 59319, 68921, 78125, 79507, 83349, 84375, 103823, 132651, 148877, 161051, 166375, 177147, 185193, 205379, 226981, 273375, 274625
Offset: 1

Views

Author

Amiram Eldar, Mar 08 2025

Keywords

Comments

Differs from its subsequence A369118 by having the terms 1, 19683 = 3^9, 1953125 = 5^9, 2460375 = 3^9 * 5^3, 6751269 = 3^9 * 7^3, 14348907 = 3^15, ... .

Crossrefs

Intersection of A005408 and A335988.
Intersection A036966 and A376218.
Subsequence of A381824.
A369118 is a subsequence.
Cf. A065487.

Programs

  • Mathematica
    Join[{1}, Select[Range[3, 300000, 2], AllTrue[FactorInteger[#][[;;, 2]],  #1 > 1 && OddQ[#1] &] &]]
  • PARI
    isok(k) = k == 1 || (k % 2 && #select(x -> (x == 1) || !(x % 2), factor(k)[, 2]) == 0);

Formula

Sum_{n>=1} 1/a(n) = Product_{prime p >= 3} (1 + 1/(p*(p^2-1))) = (6/7) * A065487 = 1.05539241333308876809... .

A377819 Powerful numbers that have no more than one even exponent in their prime factorization.

Original entry on oeis.org

1, 4, 8, 9, 16, 25, 27, 32, 49, 64, 72, 81, 108, 121, 125, 128, 169, 200, 216, 243, 256, 288, 289, 343, 361, 392, 432, 500, 512, 529, 625, 648, 675, 729, 800, 841, 864, 961, 968, 972, 1000, 1024, 1125, 1152, 1323, 1331, 1352, 1369, 1372, 1568, 1681, 1728, 1849, 1944, 2000
Offset: 1

Views

Author

Amiram Eldar, Nov 09 2024

Keywords

Comments

Powerful numbers k such that A350388(k) is either 1 or a prime power with an even positive exponent (A056798 \ {1}).

Crossrefs

Disjoint union of A335988 and A377818.
Intersection of A001694 and the complement of A377817.

Programs

  • Mathematica
    With[{max = 2000}, Select[Union@ Flatten@Table[i^2 * j^3, {j, 1, max^(1/3)}, {i, 1, Sqrt[max/j^3]}], Count[FactorInteger[#][[;; , 2]], _?EvenQ] <= 1 &]]
  • PARI
    is(k) = if(k == 1, 1, my(e = factor(k)[, 2]); vecmin(e) > 1 && #select(x -> !(x%2), e) <= 1);

Formula

Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + 1/(p*(p^2-1))) * (1 + Sum_{p prime} (p/(p^3-p+1))) = 1.84528389659572754387... .

A072802 Continued fraction expansion of Product_{p prime} (1 + 1/(p*(p^2-1))).

Original entry on oeis.org

1, 4, 3, 11, 33, 1, 2, 1, 4, 103, 1, 1, 1, 2, 2, 12, 1, 1, 3, 2, 3, 1, 1, 15, 1, 5, 11, 1, 1, 1, 5, 1, 1, 14, 1, 1, 1, 2, 20, 2, 1, 2, 2, 29, 1, 8, 1, 1, 4, 2, 2, 6, 4, 1, 1, 1, 2, 1, 12, 1, 1, 3, 2, 2, 2, 4, 2, 7, 1, 11, 2, 4, 2, 1, 1, 1, 2, 2, 1, 3, 1, 2, 7, 2, 3, 1, 11, 3, 15, 1, 1, 3, 2, 1, 3, 1, 1
Offset: 0

Views

Author

Rick L. Shepherd, Jul 11 2002

Keywords

Crossrefs

Cf. A065487 (decimal expansion).

Programs

  • PARI
    \p 1002 x=1.2312911488886035627747876512720337... (cut-and-paste all 1002 digits from link) contfrac(x)
    
  • PARI
    contfrac(prodeulerrat(1 + 1/(p*(p^2-1)))) \\ Amiram Eldar, Jun 13 2021

A365337 The sum of divisors of the largest exponentially odd number dividing n.

Original entry on oeis.org

1, 3, 4, 3, 6, 12, 8, 15, 4, 18, 12, 12, 14, 24, 24, 15, 18, 12, 20, 18, 32, 36, 24, 60, 6, 42, 40, 24, 30, 72, 32, 63, 48, 54, 48, 12, 38, 60, 56, 90, 42, 96, 44, 36, 24, 72, 48, 60, 8, 18, 72, 42, 54, 120, 72, 120, 80, 90, 60, 72, 62, 96, 32, 63, 84, 144, 68
Offset: 1

Views

Author

Amiram Eldar, Sep 01 2023

Keywords

Comments

The number of divisors of the largest exponentially odd number dividing n is A286324(n).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p^(e + Mod[e, 2]) - 1)/(p - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, (f[i,1]^(f[i,2] + f[i,2]%2) - 1)/(f[i,1] - 1));}

Formula

a(n) = A000203(A350390(n)).
Multiplicative with a(p^e) = (p^(e+1)-1)/(p-1) if e is odd and (p^e-1)/(p-1) if e is even.
Dirichlet g.f.: zeta(s) * zeta(2*s-2) * Product_{p prime} (1 + 1/p^(s-1) - 1/p^(2*s-2) + 1/p^(3*s-2)).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = Product_{p prime} (1 + 1/(p*(p^2-1))) = 1.2312911488886... (A065487). - Amiram Eldar, Sep 01 2023

A373058 The sum of the aliquot coreful divisors of the nonsquarefree numbers.

Original entry on oeis.org

2, 6, 3, 6, 14, 6, 10, 18, 5, 12, 14, 30, 36, 30, 22, 15, 42, 7, 10, 26, 24, 42, 30, 21, 62, 34, 96, 15, 38, 70, 39, 42, 66, 30, 46, 90, 14, 33, 80, 78, 126, 98, 58, 39, 90, 11, 62, 30, 42, 126, 66, 60, 102, 70, 216, 21, 74, 30, 114, 51, 78, 150, 78, 82, 126, 13
Offset: 1

Views

Author

Amiram Eldar, May 21 2024

Keywords

Comments

A coreful divisor d of n is a divisor that is divisible by every prime that divides n (see also A307958).
The positive terms of A336563: if k is a squarefree number (A005117) then the only coreful divisor of k is k itself, so k has no aliquot coreful divisors.
The number of the aliquot coreful divisors of the n-th nonsquarefree number is A368039(n).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p^(e + 1) - 1)/(p - 1) - 1; s[1] = 0; s[n_] := Times @@ f @@@ FactorInteger[n] - n; Select[Array[s, 300], # > 0 &]
  • PARI
    lista(kmax) = {my(f); for(k = 1, kmax, f = factor(k); if(!issquarefree(f), print1(prod(i = 1, #f~, (f[i, 1]^(f[i, 2]+1) - 1)/(f[i, 1] - 1) - 1) - k, ", "))); }
    
  • Python
    from math import prod, isqrt
    from sympy import mobius, factorint
    def A373058(n):
        def f(x): return n+sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1))
        m, k = n, f(n)
        while m != k:
            m, k = k, f(k)
        return prod((p**(e+1)-1)//(p-1)-1 for p, e in factorint(m).items())-m # Chai Wah Wu, Jul 22 2024

Formula

a(n) = A336563(A013929(n)).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = (A065487 - 1)/(1-1/zeta(2))^2 = 1.50461493205911656114... .
Previous Showing 11-18 of 18 results.