cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 89 results. Next

A376761 Number of primes between the n-th composite number c(n) and 2*c(n).

Original entry on oeis.org

2, 2, 2, 3, 4, 4, 3, 4, 5, 4, 4, 5, 6, 6, 6, 6, 7, 7, 7, 7, 7, 8, 8, 9, 9, 9, 10, 10, 9, 10, 10, 9, 10, 10, 11, 12, 12, 13, 13, 14, 14, 13, 12, 12, 13, 13, 14, 13, 14, 15, 14, 13, 14, 15, 15, 15, 15, 15, 16, 16, 16, 16, 17, 17, 17, 18, 18, 18, 18, 18, 19, 19, 20, 21, 20, 19, 19, 20, 19, 18, 18, 19, 19, 20, 20, 21, 21, 21, 22, 23, 23, 23, 23, 23, 24, 23, 24, 24, 24, 24, 24, 25
Offset: 1

Views

Author

N. J. A. Sloane, Oct 22 2024

Keywords

Comments

Obviously the endpoints are not counted (since they are composite).

Crossrefs

Related sequences:
Primes (p) and composites (c): A000040, A002808, A000720, A065855.
Primes between p(n) and 2*p(n): A063124, A070046; between c(n) and 2*c(n): A376761; between n and 2*n: A035250, A060715, A077463, A108954.
Composites between p(n) and 2*p(n): A246514; between c(n) and 2*c(n): A376760; between n and 2*n: A075084, A307912, A307989, A376759.

Programs

  • Mathematica
    MapIndexed[PrimePi[2*#] + #2[[1]] - # + 1 &, Select[Range[100], CompositeQ]] (* Paolo Xausa, Oct 22 2024 *)
  • Python
    from sympy import composite, primepi
    def A376761(n): return n+1-(m:=composite(n))+primepi(m<<1) # Chai Wah Wu, Oct 22 2024

Formula

a(n) = A000720(2*A002808(n)) - A002808(n) + n + 1. - Paolo Xausa, Oct 22 2024

A066246 a(n) = 0 unless n is a composite number A002808(k) then a(n) = k.

Original entry on oeis.org

0, 0, 0, 1, 0, 2, 0, 3, 4, 5, 0, 6, 0, 7, 8, 9, 0, 10, 0, 11, 12, 13, 0, 14, 15, 16, 17, 18, 0, 19, 0, 20, 21, 22, 23, 24, 0, 25, 26, 27, 0, 28, 0, 29, 30, 31, 0, 32, 33, 34, 35, 36, 0, 37, 38, 39, 40, 41, 0, 42, 0, 43, 44, 45, 46, 47, 0, 48, 49, 50, 0, 51, 0, 52, 53, 54, 55, 56, 0, 57
Offset: 1

Views

Author

Reinhard Zumkeller, Dec 09 2001

Keywords

Crossrefs

Programs

  • Haskell
    import Data.List (unfoldr, genericIndex)
    a066246 n = genericIndex a066246_list (n - 1)
    a066246_list = unfoldr x (1, 1, a002808_list) where
       x (i, z, cs'@(c:cs)) | i == c = Just (z, (i + 1, z + 1, cs))
                            | i /= c = Just (0, (i + 1, z, cs'))
    -- Reinhard Zumkeller, Jan 29 2014
  • Mathematica
    Module[{k=1},Table[If[CompositeQ[n],k;k++,0],{n,100}]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jan 03 2019 *)
  • PARI
    a(n)=if(isprime(n),0,max(0,n-primepi(n)-1)) \\ Charles R Greathouse IV, Aug 21 2011
    

Formula

a(n) = A239968(n) + A010051(n) - 1. - Reinhard Zumkeller, Mar 30 2014
a(n) = A065855(n)*A005171(n). - Ridouane Oudra, Jul 29 2025

A373404 Sum of the n-th maximal antirun of composite numbers differing by more than one.

Original entry on oeis.org

18, 9, 36, 15, 54, 21, 46, 25, 26, 27, 90, 33, 34, 35, 74, 39, 126, 45, 94, 49, 50, 51, 106, 55, 56, 57, 180, 63, 64, 65, 134, 69, 216, 75, 76, 77, 158, 81, 166, 85, 86, 87, 178, 91, 92, 93, 94, 95, 194, 99, 306, 105, 324, 111, 226, 115, 116, 117, 118, 119
Offset: 1

Views

Author

Gus Wiseman, Jun 05 2024

Keywords

Comments

The length of this antirun is given by A373403.
An antirun of a sequence (in this case A002808) is an interval of positions at which consecutive terms differ by more than one.

Examples

			Row sums of:
   4   6   8
   9
  10  12  14
  15
  16  18  20
  21
  22  24
  25
  26
  27
  28  30  32
  33
  34
  35
  36  38
  39
  40  42  44
		

Crossrefs

Partial sums are a subset of A053767 (partial sums of composite numbers).
Functional neighbors: A005381, A054265, A068780, A373403, A373405, A373411, A373412.
A000040 lists the primes, differences A001223.
A002808 lists the composite numbers, differences A073783.
A046933 counts composite numbers between primes.
A065855 counts composite numbers up to n.

Programs

  • Mathematica
    Total/@Split[Select[Range[100],CompositeQ],#1+1!=#2&]//Most

A373821 Run-lengths of run-lengths of first differences of odd primes.

Original entry on oeis.org

1, 11, 1, 19, 1, 1, 1, 5, 1, 6, 1, 16, 1, 27, 1, 3, 1, 1, 1, 6, 1, 9, 1, 29, 1, 2, 1, 18, 1, 1, 1, 5, 1, 3, 1, 17, 1, 19, 1, 30, 1, 17, 1, 46, 1, 17, 1, 27, 1, 30, 1, 5, 1, 36, 1, 41, 1, 10, 1, 31, 1, 44, 1, 4, 1, 14, 1, 6, 1, 2, 1, 32, 1, 13, 1, 17, 1, 5
Offset: 1

Views

Author

Gus Wiseman, Jun 22 2024

Keywords

Comments

Run-lengths of A333254.
The first term other than 1 at an odd positions is at a(101) = 2.
Also run-lengths (differing by 0) of run-lengths (differing by 0) of run-lengths (differing by 1) of composite numbers.

Examples

			The odd primes are:
3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, ...
with first differences:
2, 2, 4, 2, 4, 2, 4, 6, 2, 6, 4, 2, 4, 6, 6, 2, 6, 4, 2, 6, 4, 6, 8, ...
with run-lengths:
2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, ...
with run-lengths a(n).
		

Crossrefs

Run-lengths of run-lengths of A046933(n) = A001223(n) - 1.
Run-lengths of A333254.
A000040 lists the primes.
A001223 gives differences of consecutive primes.
A027833 gives antirun lengths of odd primes (partial sums A029707).
A065855 counts composite numbers up to n.
A071148 gives partial sums of odd primes.
A373820 gives run-lengths of antirun-lengths of odd primes.
For prime runs: A001359, A006512, A025584, A067774, A373406.
For composite runs: A005381, A008864, A054265, A176246, A251092, A373403.

Programs

  • Mathematica
    Length/@Split[Length /@ Split[Differences[Select[Range[3,1000],PrimeQ]]]//Most]//Most

A236854 Self-inverse permutation of natural numbers: a(1)=1, then a(p_n)=c_{a(n)}, a(c_n)=p_{a(n)}, where p_n = n-th prime, c_n = n-th composite.

Original entry on oeis.org

1, 4, 9, 2, 16, 7, 6, 23, 3, 53, 26, 17, 14, 13, 83, 5, 12, 241, 35, 101, 59, 43, 8, 41, 431, 11, 37, 1523, 75, 149, 39, 547, 277, 191, 19, 179, 27, 3001, 31, 157, 24, 12763, 22, 379, 859, 167, 114, 3943, 1787, 1153, 67, 1063, 10, 103, 27457, 127, 919, 89, 21
Offset: 1

Views

Author

Antti Karttunen, Feb 01 2014, based on Katarzyna Matylla's original but misplaced definition for A135044 from Feb 11 2008

Keywords

Comments

Shares with A026239 the property that the prime-positions 2, 3, 5, 7, ... contain only composite values and the composite-positions 4, 6, 8, 9, ..., etc. contain only prime values. However, instead of placing terms in those subsets in monotone order this sequence recursively permutes the order of both subsets with the emerging permutation itself, so this is a kind of "deep" variant of A026239. Alternatively, this can be viewed as yet another "entanglement permutation", where two pairs of complementary subsets of natural numbers are entangled with each other. In this case a complementary pair primes/composites (A000040/A002808) is entangled with a complementary pair composites/primes.
Maps A006508 to A007097 and vice versa.

Examples

			a(5)=c(a(3))=c(9)=16, because 5=prime(3), and the 9th composite number is c(9)=16.
Thus a(10)=prime(a(5))=prime(16)=53 (since 10 is the 5th composite), a(18)=prime(a(10))=prime(53)=241 (since 18 is the 10th composite), a(28)=prime(a(18))=prime(241)=1523.
A significant record value is a(198) = prime(a(152)) = prime(563167303) since 198=c(152); a(152)=prime(a(115)) since 152=c(115); a(115)=prime(a(84)); a(84)=prime(a(60)); a(60)=prime(a(42)); a(42)=prime(a(28)).
		

Crossrefs

Differs from A135044 for the first time at n=8, where A135044(8)=13, while here a(8)=23.

Programs

  • Mathematica
    terms = 150; cc = Select[Range[4, 2 terms^2(*empirical*)], CompositeQ]; compositePi[k_?CompositeQ] := FirstPosition[cc, k][[1]]; a[1] = 1; a[p_?PrimeQ] := a[p] = cc[[a[PrimePi[p]]]]; a[k_] := a[k] = Prime[a[ compositePi[k]]]; Array[a, terms] (* Jean-François Alcover, Mar 02 2016 *)
  • PARI
    A236854(n)={if(isprime(n), A002808(A236854(primepi(n))), n==1&&return(1);prime(A236854(n-primepi(n)-1)))} \\ without memoization: not much slower. - M. F. Hasler, Feb 03 2014
    
  • PARI
    a236854=vector(999);a236854[1]=1;A236854(n)={a236854[n]&&return(a236854[n]); a236854[n]=if(isprime(n), A002808(A236854(primepi(n))), prime(A236854(n-primepi(n)-1)))} \\ Version with memoization. - M. F. Hasler, Feb 03 2014
    
  • Python
    from sympy import primepi, prime, isprime
    def a002808(n):
        m, k = n, primepi(n) + 1 + n
        while m != k: m, k = k, primepi(k) + 1 + n
        return m # this function from Chai Wah Wu
    def a(n): return n if n<2 else a002808(a(primepi(n))) if isprime(n) else prime(a(n - primepi(n) - 1))
    print([a(n) for n in range(1, 101)]) # Indranil Ghosh, Jun 07 2017

Formula

a(1)=1, a(p_i) = A002808(a(i)) for primes with index i, a(c_j) = A000040(a(j)) for composites with index j (where 4 has index 1, 6 has index 2, and so on).

Extensions

Values double-checked by M. F. Hasler, Feb 03 2014

A373406 Sum of the n-th maximal run of odd primes differing by two.

Original entry on oeis.org

15, 24, 36, 23, 60, 37, 84, 47, 53, 120, 67, 144, 79, 83, 89, 97, 204, 216, 113, 127, 131, 276, 300, 157, 163, 167, 173, 360, 384, 396, 211, 223, 456, 233, 480, 251, 257, 263, 540, 277, 564, 293, 307, 624, 317, 331, 337, 696, 353, 359, 367, 373, 379, 383
Offset: 1

Views

Author

Gus Wiseman, Jun 05 2024

Keywords

Comments

The length of this run is given by A251092.
For this sequence we define a run to be an interval of positions at which consecutive terms differ by two. Normally, a run has consecutive terms differing by one, but odd prime numbers already differ by at least two.
Contains A054735 (sums of twin prime pairs) without its first two terms and A007510 (non-twin primes) as subsequences. - R. J. Mathar, Jun 07 2024

Examples

			Row-sums of:
   3   5   7
  11  13
  17  19
  23
  29  31
  37
  41  43
  47
  53
  59  61
  67
  71  73
  79
  83
  89
  97
		

Crossrefs

The partial sums are a subset of A071148 (partial sums of odd primes).
Functional neighbors: A025584, A054265, A067774, A251092 (or A175632), A373405, A373413, A373414.
A000040 lists the primes, differences A001223.
A046933 counts composite numbers between primes.
A065855 counts composite numbers up to n.

Programs

  • Mathematica
    Total/@Split[Select[Range[3,100],PrimeQ],#1+2==#2&]//Most

A373820 Run-lengths (differing by 0) of antirun-lengths (differing by > 2) of odd primes.

Original entry on oeis.org

2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Jun 22 2024

Keywords

Comments

Run-lengths of the version of A027833 with 1 prepended.

Examples

			The antiruns of odd primes (differing by > 2) begin:
   3
   5
   7  11
  13  17
  19  23  29
  31  37  41
  43  47  53  59
  61  67  71
  73  79  83  89  97 101
 103 107
 109 113 127 131 137
 139 149
 151 157 163 167 173 179
 181 191
 193 197
 199 211 223 227
 229 233 239
 241 251 257 263 269
 271 277 281
with lengths:
1, 1, 2, 2, 3, 3, 4, 3, 6, 2, 5, 2, 6, 2, 2, ...
with runs:
  1  1
  2  2
  3  3
  4
  3
  6
  2
  5
  2
  6
  2  2
  4
  3
  5
  3
  4
with lengths a(n).
		

Crossrefs

Run-lengths of A027833 (if we prepend 1), partial sums A029707.
For runs we have A373819, run-lengths of A251092.
Positions of first appearances are A373827, sorted A373826.
A000040 lists the primes.
A001223 gives differences of consecutive primes, run-lengths A333254, run-lengths of run-lengths A373821.
A046933 counts composite numbers between primes.
A065855 counts composite numbers up to n.
A071148 gives partial sums of odd primes.
For composite runs: A005381, A054265, A068780, A373403, A373404.

Programs

  • Mathematica
    Length/@Split[Length/@Split[Select[Range[3,1000],PrimeQ],#2-#1>2&]//Most]//Most

A356068 Number of integers ranging from 1 to n that are not prime-powers (1 is not a prime-power).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 4, 4, 5, 6, 6, 6, 7, 7, 8, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14, 14, 14, 15, 16, 17, 18, 18, 19, 20, 21, 21, 22, 22, 23, 24, 25, 25, 26, 26, 27, 28, 29, 29, 30, 31, 32, 33, 34, 34, 35, 35, 36, 37, 37, 38, 39, 39, 40, 41, 42
Offset: 1

Views

Author

Gus Wiseman, Jul 31 2022

Keywords

Examples

			The a(30) = 14 numbers: 1, 6, 10, 12, 14, 15, 18, 20, 21, 22, 24, 26, 28, 30.
		

Crossrefs

The complement is counted by A025528, with 1's A065515.
For primes instead of prime-powers we have A062298, with 1's A065855.
The version treating 1 as a prime-power is A085970.
One more than the partial sums of A143731.
A000688 counts factorizations into prime-powers.
A001222 counts prime-power divisors.
A246655 lists the prime-powers (A000961 includes 1), towers A164336.

Programs

  • Mathematica
    Table[Length[Select[Range[n],!PrimePowerQ[#]&]],{n,100}]

Formula

a(n) = A085970(n) + 1.

A373822 Sum of the n-th maximal run of first differences of odd primes.

Original entry on oeis.org

4, 4, 2, 4, 2, 4, 6, 2, 6, 4, 2, 4, 12, 2, 6, 4, 2, 6, 4, 6, 8, 4, 2, 4, 2, 4, 14, 4, 6, 2, 10, 2, 12, 4, 12, 2, 10, 2, 4, 2, 24, 4, 2, 4, 6, 2, 10, 18, 2, 6, 4, 2, 10, 14, 4, 2, 4, 14, 6, 10, 2, 4, 6, 8, 12, 4, 6, 8, 4, 8, 10, 2, 10, 2, 6, 4, 6, 8, 4, 2, 4
Offset: 1

Views

Author

Gus Wiseman, Jun 22 2024

Keywords

Comments

Run-sums of A001223. For run-lengths instead of run-sums we have A333254.

Examples

			The odd primes are
3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, ...
with first differences
2, 2, 4, 2, 4, 2, 4, 6, 2, 6, 4, 2, 4, 6, 6, 2, 6, 4, 2, 6, 4, 6, 8, ...
with runs
(2,2), (4), (2), (4), (2), (4), (6), (2), (6), (4), (2), (4), (6,6), ...
with sums a(n).
		

Crossrefs

Run-sums of A001223.
For run-lengths we have A333254, run-lengths of run-lengths A373821.
Dividing by two gives A373823.
A000040 lists the primes.
A027833 gives antirun lengths of odd primes (partial sums A029707).
A046933 counts composite numbers between primes.
A065855 counts composite numbers up to n.
A071148 gives partial sums of odd primes.
A373820 gives run-lengths of antirun-lengths of odd primes.

Programs

  • Mathematica
    Total/@Split[Differences[Select[Range[3,1000],PrimeQ]]]

A071574 If n = k-th prime, a(n) = 2*a(k) + 1; if n = k-th nonprime, a(n) = 2*a(k).

Original entry on oeis.org

0, 1, 3, 2, 7, 6, 5, 4, 14, 12, 15, 10, 13, 8, 28, 24, 11, 30, 9, 20, 26, 16, 29, 56, 48, 22, 60, 18, 25, 40, 31, 52, 32, 58, 112, 96, 21, 44, 120, 36, 27, 50, 17, 80, 62, 104, 57, 64, 116, 224, 192, 42, 49, 88, 240, 72, 54, 100, 23, 34, 61, 160, 124, 208, 114, 128, 19
Offset: 1

Views

Author

Christopher Eltschka (celtschk(AT)web.de), May 31 2002

Keywords

Comments

The recursion start is implicit in the rule, since the rule demands that a(1)=2*a(1). All other terms are defined through terms for smaller indices until a(1) is reached.
a(n) is a bijective mapping from the positive integers to the nonnegative integers. Given the value of a(n), you can get back to n using the following algorithm:
Start with an initial value of k=1 and write a(n) in binary representation. Then for each bit, starting with the most significant one, do the following: - if the bit is 1, replace k by the k-th prime - if the bit is 0, replace k by the k-th nonprime. After you processed the last (i.e. least significant) bit of a(n), you've got n=k.
Example: From a(n) = 12 = 1100_2, you get 1->2->3=>6=>10; a(10)=12. Here each "->" is a step due to binary digit 1; each "=>" is a step due to binary digit 0.
The following sequences all appear to have the same parity (with an extra zero term at the start of A010051): A010051, A061007, A035026, A069754, A071574. - Jeremy Gardiner, Aug 09 2002. (At least with this sequence the identity a(n) = A010051(n) mod 2 is obvious, because each prime is mapped to an odd number and each composite to an even number. - Antti Karttunen, Apr 04 2015)
For n > 1: a(n) = 2 * a(if i > 0 then i else A066246(n) + 1) + A057427(i) with i = A049084(n). - Reinhard Zumkeller, Feb 12 2014
A237739(a(n)) = n; a(A237739(n)) = n. - Reinhard Zumkeller, Apr 30 2014

Examples

			1 is the 1st nonprime, so a(1) = 2*a(1), therefore a(1) = 0.
2 is the 1st prime, so a(2) = 2*a(1)+1 = 2*0+1 = 1.
4 is the 2nd nonprime, so a(4) = 2*a(2) = 2*1 = 2.
		

Crossrefs

Inverse: A237739.
Compare also to the permutation A246377.
Same parity: A010051, A061007, A035026, A069754.

Programs

  • Haskell
    a071574 1 = 0
    a071574 n = 2 * a071574 (if j > 0 then j + 1 else a049084 n) + 1 - signum j
                where j = a066246 n
    -- Reinhard Zumkeller, Feb 12 2014
    
  • Mathematica
    a[1]=0; a[n_]:=If[PrimeQ[n],2*a[PrimePi[n]]+1,2*a[n-PrimePi[n]]];Table[a[n],{n,100}]
  • PARI
    first(n) = my(res = vector(n), p); for(x=2, n, p=isprime(x); res[x]=2*res[x*!p-(-1)^p*primepi(x)]+p); res \\ Iain Fox, Oct 19 2018
  • Scheme
    ;; With memoizing definec-macro.
    (definec (A071574 n) (cond ((= 1 n) 0) ((= 1 (A010051 n)) (+ 1 (* 2 (A071574 (A000720 n))))) (else (* 2 (A071574 (+ 1 (A065855 n)))))))
    ;; Antti Karttunen, Apr 04 2015
    

Formula

a(1) = 0, and for n > 1, if A010051(n) = 1 [when n is a prime], a(n) = 1 + 2*a(A000720(n)), otherwise a(n) = 2*a(1 + A065855(n)). - Antti Karttunen, Apr 04 2015

Extensions

Mathematica program completed by Harvey P. Dale, Nov 28 2024
Previous Showing 31-40 of 89 results. Next