cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A248793 Sigma(n) - 1 for n such that sigma(n) - 1 is prime.

Original entry on oeis.org

2, 3, 5, 11, 7, 17, 11, 13, 23, 23, 17, 19, 41, 31, 23, 59, 41, 29, 71, 31, 47, 53, 47, 37, 59, 89, 41, 43, 83, 71, 47, 71, 97, 53, 71, 79, 89, 59, 167, 61, 103, 83, 67, 71, 73, 113, 139, 167, 79, 83, 223, 107, 131, 179, 89, 233, 167, 127, 251, 97, 101, 103
Offset: 1

Views

Author

Jaroslav Krizek, Nov 01 2014

Keywords

Comments

a(n) = corresponding values of primes p = sigma(A248792(n)) - 1, where A248792(n) = numbers n such that sigma(n) - 1 is prime.
If there are at least two numbers k, h such that a(k) = a(h) = p, then p is in A158913.

Crossrefs

Programs

  • Magma
    [a: n in [1..1000] | IsPrime(a) where a is SumOfDivisors(n)-1]
    
  • Maple
    F:= proc(n)
    local r;
    r:= numtheory:-sigma(n)-1;
    if isprime(r) then r else NULL fi
    end proc:
    seq(F(n),n=1..1000); # Robert Israel, Nov 02 2014
  • Mathematica
    a248793[n_Integer] :=
    Cases[DivisorSigma[1, #] - 1 & /@ Range[n], ?PrimeQ]; a248793[104] (* _Michael De Vlieger, Nov 07 2014 *)
  • PARI
    for(n=1,10^3,if(isprime(sigma(n)-1),print1(sigma(n)-1,", "))) \\ Derek Orr, Nov 01 2014

Formula

a(n) = A000203(A248792(n)) - 1.
If A248792(n) is a prime p, then a(n) = A248792(n) = p.

A068014 Nonprimes n such that 1+phi(n) and -1 + sigma(n) are prime numbers.

Original entry on oeis.org

6, 10, 14, 21, 26, 34, 38, 40, 46, 55, 57, 58, 60, 63, 74, 76, 86, 88, 93, 111, 114, 117, 118, 124, 126, 135, 145, 153, 158, 166, 178, 184, 186, 190, 194, 198, 206, 208, 209, 216, 221, 224, 230, 232, 238, 250, 252, 254, 260, 266, 270, 278, 280, 295, 297, 298
Offset: 1

Views

Author

Labos Elemer, Feb 08 2002

Keywords

Comments

1+A000010(n) and -1+A000203(n) are primes but n is nonprime.

Examples

			For n = 38, phi(38) + 1 = 19 and sigma(38) - 1 = 1 + 2 + 19 + 38 - 1 = 59. [corrected by _Peter Munn_, Dec 30 2017]
		

Crossrefs

Programs

  • Mathematica
    Do[s=-1+DivisorSigma[1, n]; s1=1+EulerPhi[n]; If[PrimeQ[s]&&PrimeQ[s1]&&!PrimeQ[n], Print[{n, s1, s}]], {n, 1, 1000}] (* generates sequence and related primes too *)
    Select[Range@ 300, And[CompositeQ@ #, AllTrue[{1 + EulerPhi@ #, -1 + DivisorSigma[1, #]}, PrimeQ]] &] (* Michael De Vlieger, Dec 29 2017 *)
  • PARI
    isok(n) = !isprime(n) && isprime(1+eulerphi(n)) && isprime(sigma(n)-1); \\ Michel Marcus, Dec 29 2017

A128510 Composites c such that c*A001414(c) is adjacent to a prime.

Original entry on oeis.org

4, 6, 8, 9, 10, 12, 14, 16, 20, 21, 25, 26, 28, 33, 34, 35, 36, 38, 40, 42, 44, 46, 50, 51, 52, 54, 55, 56, 60, 64, 65, 68, 72, 74, 76, 80, 81, 82, 85, 90, 93, 95, 96, 98, 100, 102, 110, 111, 115, 119, 121, 122, 123, 124, 126, 132, 133, 135, 138, 140, 143, 144, 145, 146, 148, 150
Offset: 1

Views

Author

J. M. Bergot, May 07 2007

Keywords

Comments

The composites c of A002808 are multiplied by the sum of their prime factors (with multiplicity), and are placed into the sequence if that product is in A045718.

Examples

			c = 52= A002808(74) has prime factor sum A001414(52) = 17, and 52*17 = 883+1 is one away from the prime 883, which adds 52 to the sequence.
		

Crossrefs

Cf. A066073.

Programs

  • Maple
    A001414 := proc(n) local fcts,d ; fcts := ifactors(n)[2] ; add(op(1,d)*op(2,d),d=fcts) ; end proc:
    isA045718 := proc(n) isprime(n+1) or isprime(n-1) ; end proc:
    isA128510 := proc(n) local c; if not isprime(n) then c := n*A001414(n) ; isA045718(c) ; else false; end if ; end proc:
    for n from 4 to 500 do if isA128510(n) then printf("%d,",n) ; end if; end do: # R. J. Mathar, Nov 02 2009

Extensions

8 inserted and sequence extended by R. J. Mathar, Nov 02 2009
Previous Showing 11-13 of 13 results.