cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 142 results. Next

A242966 Composite numbers whose anti-divisors are all primes.

Original entry on oeis.org

4, 8, 16, 64, 1024, 4096, 65536, 262144, 4194304, 1073741824, 1152921504606846976, 1267650600228229401496703205376, 85070591730234615865843651857942052864, 93536104789177786765035829293842113257979682750464
Offset: 1

Views

Author

Paolo P. Lava, May 28 2014

Keywords

Comments

It appears they are all powers of 2.
Subset of A242965.
a(n) must be 2^k. - Hiroaki Yamanouchi, Mar 17 2015
The exponents are 2, 3, 4, 6, 10, 12, 16, 18, 22, 30, 60, 100, 126, 166, 198, ... - Michel Marcus, Mar 18 2015

Examples

			The anti-divisors of 1024 are all primes: 3, 23, 89, 683.
The same for 65536: 3, 43691.
		

Crossrefs

Programs

  • Maple
    P := proc(q) local k,ok,n; for n from 3 to q do if not isprime(n)
    then ok:=1; for k from 2 to n-1 do if abs((n mod k)-k/2)<1
    then if not isprime(k) then ok:=0; break; fi; fi; od;
    if ok=1 then print(n); fi; fi; od; end: P(10^100);
  • Mathematica
    antiDivisors[n_] := Cases[Range[2, n - 1], ?(Abs[Mod[n, #] - #/2] < 1 &)]; Select[2^Range[2, 20], AllTrue[antiDivisors@ #, PrimeQ] &] (* _Michael De Vlieger, Mar 18 2015 *)
  • Python
    from sympy import isprime, divisors
    A242966 = [n for n in range(3,10**5) if not isprime(n) and list(filter(lambda x: not isprime(x), [2*d for d in divisors(n) if n > 2*d and n % (2*d)] + [d for d in divisors(2*n-1) if n > d >=2 and n % d] + [d for d in divisors(2*n+1) if n > d >=2 and n % d])) == []]
    # Chai Wah Wu, Aug 13 2014

Extensions

a(11)-a(14) from Hiroaki Yamanouchi, Mar 17 2015

A066416 Number of numbers m such that the sum of the anti-divisors of m is n+1.

Original entry on oeis.org

0, 1, 1, 1, 1, 0, 0, 2, 0, 1, 0, 1, 1, 2, 0, 1, 0, 2, 1, 0, 0, 1, 1, 3, 0, 0, 0, 2, 0, 1, 0, 1, 0, 1, 0, 2, 0, 0, 1, 1, 1, 3, 0, 0, 0, 2, 0, 1, 0, 1, 0, 3, 0, 1, 1, 3, 1, 3, 0, 1, 0, 0, 0, 2, 0, 1, 0, 0, 0, 1, 0, 1, 0, 2, 0, 1, 0, 2, 0, 1, 0, 0, 0, 2, 0, 2, 0, 2
Offset: 1

Views

Author

Jon Perry, Dec 28 2001

Keywords

Comments

See A066272 for definition of anti-divisor.

Examples

			8 has anti-divisors 1, 3 and 5, whose sum is 9 and 9 has anti-divisors 1, 2 and 6, whose sum is 9 and there are no others. Therefore a(8)=2.
		

Crossrefs

A066464 Least number k such that k has n anti-divisors.

Original entry on oeis.org

1, 3, 5, 7, 13, 17, 32, 38, 85, 67, 162, 137, 338, 203, 760, 247, 1225, 472, 578, 682, 1012, 787, 9112, 1463, 2048, 2047, 2888, 2363, 5513, 3465, 5512, 6682, 8978, 5197, 17672, 5198, 71442, 9653, 29768, 8662, 40898, 13513, 81608, 15593, 131072, 35437
Offset: 0

Views

Author

Robert G. Wilson v, Jan 02 2002

Keywords

Comments

See A066272 for definition of anti-divisor.

Crossrefs

Cf. A066272.

Programs

  • Mathematica
    antid[n_] := Select[ Union[ Join[ Select[ Divisors[2n - 1], OddQ[ # ] && # != 1 & ], Select[ Divisors[2n + 1], OddQ[ # ] && # != 1 & ], 2n/Select[ Divisors[ 2n], OddQ[ # ] && # != 1 &]]], # < n & ]; a = Table[0, {50} ]; Do[ b = Length[ antid[n]]; If[ b < Length[a] && a[[b + 1]] == 0, a[[b + 1]] = n], {n, 1, 2^17} ]; a

A066482 The smallest anti-divisor of n.

Original entry on oeis.org

2, 3, 2, 4, 2, 3, 2, 3, 2, 5, 2, 3, 2, 3, 2, 4, 2, 3, 2, 3, 2, 7, 2, 3, 2, 3, 2, 4, 2, 3, 2, 3, 2, 8, 2, 3, 2, 3, 2, 4, 2, 3, 2, 3, 2, 5, 2, 3, 2, 3, 2, 4, 2, 3, 2, 3, 2, 7, 2, 3, 2, 3, 2, 4, 2, 3, 2, 3, 2, 5, 2, 3, 2, 3, 2, 4, 2, 3, 2, 3, 2, 8, 2, 3, 2, 3, 2, 4, 2, 3, 2, 3, 2, 64, 2, 3, 2, 3
Offset: 3

Views

Author

Robert G. Wilson v, Jan 02 2002

Keywords

Comments

Almost identical to A007978, least non-divisor of n, but there are some subtle differences.
See A066272 for definition of anti-divisor.

Crossrefs

Cf. A066481.

Programs

  • Mathematica
    antid[n_] := Select[ Union[ Join[ Select[ Divisors[2n - 1], OddQ[ # ] && # != 1 &], Select[ Divisors[2n + 1], OddQ[ # ] && # != 1 &], 2n/Select[ Divisors[2*n], OddQ[ # ] && # != 1 &]]], # < n & ]; Table[ First[ antid[n]], {n, 3, 100} ]

A066519 Gaps between successive numbers with an anti-divisor class sum of zero.

Original entry on oeis.org

1, 1, 3, 3, 6, 2, 4, 7, 2, 6, 7, 3, 1, 4, 3, 8, 7, 2, 1, 3, 5, 10, 2, 1, 3, 3, 2, 1, 5, 1, 1, 1, 4, 4, 2, 2, 2, 9, 2, 6, 9, 1, 1, 4, 4, 1, 3, 6, 1, 3, 22, 1, 9, 1, 1, 2, 2, 4, 7, 3, 5, 4, 1, 2, 20, 1, 2, 6, 1, 4, 4, 9, 5, 1, 4, 5, 2, 7, 8, 2, 2, 9, 2, 2, 1, 5, 3, 1, 4, 1, 12, 16, 13, 5, 1, 9, 2, 1, 3, 3
Offset: 1

Views

Author

Jon Perry, Jan 06 2002

Keywords

Comments

See A066272 for definition of anti-divisor.

Examples

			f(1)=f(2)=f(3)=0, f(4)=1, f(5)=-1, f(6)=0, so the first 3 gaps are 1, 1, 3.
		

Crossrefs

Cf. A066518.

Programs

  • Mathematica
    a[ n_ ] := Sum[ Which[ Mod[ n, d ]==(d-1)/2, -1, Mod[ n, d ]==(d+1)/2, 1, True, 0 ], {d, 2, n-1} ]; z=Select[ Range[ 1, 500 ], a[ # ]==0& ]; Drop[ z, 1 ]-Drop[ z, -1 ]

Extensions

Edited by Dean Hickerson, Jan 17 2002

A066542 Nonnegative integers all of whose anti-divisors are either 2 or odd.

Original entry on oeis.org

3, 4, 5, 7, 8, 11, 13, 16, 17, 19, 23, 29, 31, 32, 37, 41, 43, 47, 53, 59, 61, 64, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 128, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251
Offset: 1

Views

Author

John W. Layman, Jan 07 2002

Keywords

Comments

See A066272 for definition of anti-divisor.
The following conjectures have been proved by Bob Selcoe. - Michael Somos, Feb 28 2014
Additional conjectures suggested by computational experiments:
1) Numbers all of whose anti-divisors (AD's) are odd => {2^k} (A000079).
2) Numbers with AD 2, all other AD's odd => primes (A000040).
3) Numbers none of whose AD's are multiples of 3 => 3*2^k (A007283).
4) Numbers all of whose AD's are even => 3*A002822 = A040040 (except for a(0)=1), both related to twin prime pairs.
Calculations suggest the following conjecture. This sequence consists of all odd primes and nonnegative powers of 2 and no other terms. This has been verified for to n=100000. Robert G. Wilson v extended the conjecture out to 2^20.
From Bob Selcoe, Feb 24 2014: (Start)
The sequence consists of all odd primes and powers of two (>=2^2) and no other terms.
Proof: Denote the even anti-divisors of n as ADe(n). ADe(n) is defined as the set of numbers x satisfying the equation n(mod x)=x/2. Substitute x = 2n/y, since it can be shown that ADe(n) => 2n divided by the odd divisors of n when n>1 (This is because 2j anti-divides only numbers of the form 3j+2j*k; j>=1, k>=0. For example: j=7; 14 anti-divides only 21,35,49,63.... So in other words, even numbers anti-divide only odd multiples (>=3) of themselves, divided by 2). Therefore, ADe(n) is n(mod [2n/y])=n/y, and y must be an odd divisor of n and 2n, y>1. Since y is the only odd divisor of n when y>1 iff n is prime, then ADe(n) => 2 when n is prime. Since 2n has no odd divisors when n=2^k, then ADe(n) is null when n=2^k. Therefore, the only numbers whose anti-divisors are either 2 or odd must be primes and powers of 2.
Similarly, for odd anti-divisors (ADo(n)): Given 2j+1 (odd numbers) anti-divide only numbers of the forms [(3j+1)+(2j+1)*k] and [(3j+2)+(2j+1)*k]; j>=1, k>=0. (For example: j=6; 13 anti-divides only 19,20, 32,33, 45,46...). Since odd n divided by its odd divisors ARE its odd divisors, then ADo(n) => the divisors of 2n-1 and 2n+1 (except 1, 2n-1 and 2n+1).
By extension:
1) Numbers all of whose anti-divisors (AD's) are odd => {2^k} (A000079).
2) Numbers with ADe(n)=2, all other AD's odd => primes (A000040).
3) Numbers none of whose AD's are multiples of j => j*2^k.
4) When 2n-1 and 2n+1 are twin primes, (A040040, except for a(0)=1) then n has only even AD's.
(End)
If 1 and 2 are included, this sequence contains all positive integers not contained in A111774. - Bob Selcoe, Sep 09 2014 [corrected by Wolfdieter Lang, Nov 06 2020]

Examples

			From _Bob Selcoe_, Feb 24 2014: (Start)
ADe(420): Odd divisors of 420 are: 3,5,7,15,21,35, 105. ADe(420) => 840/{3,5,7,15,21,35,105} = 8,24,40,56,120,168 and 280.
ADo(420) => the divisors of 839 and 841, which are (a) for 839: null (839 is prime); and (b) for 841: 29 (841 is 29^2).
All AD's (AD(420)) => 8,24,29,40,56,120,168 and 280 (End)
		

Crossrefs

Programs

  • Mathematica
    antid[n_] := Select[ Union[ Join[ Select[ Divisors[2n - 1], OddQ[ # ] && # != 1 &], Select[ Divisors[2n + 1], OddQ[ # ] && # != 1 &], 2n / Select[ Divisors[2*n], OddQ[ # ] && # != 1 &]]], # < n & ]; f[n_] := Select[ antid[n], EvenQ[ # ] && # > 2 & ]; Select[ Range[3, 300], f[ # ] == {} & ]

A073694 Numbers k such that the number of divisors of k equals the number of anti-divisors of k.

Original entry on oeis.org

5, 32, 50, 162, 512, 1984, 2450, 3784, 5408, 7564, 9248, 15488, 19208, 22684, 26680, 30752, 53792, 79600, 85698, 102604, 113764, 131584, 189112, 199712, 279752, 336200, 435244, 514098, 546012, 581042, 658952, 712818, 727218, 752764, 767560
Offset: 1

Views

Author

Jason Earls, Aug 30 2002

Keywords

Comments

See A066272 for definition of anti-divisor.

Examples

			32 is here since it has 6 divisors: {1, 2, 4, 8, 16, 32} and 6 anti-divisors: {3, 5, 7, 9, 13, 21}.
		

Crossrefs

Programs

  • Mathematica
    atd[n_] := Count[Flatten[Quotient[#, Rest[Select[Divisors[#], OddQ]]] & /@ (2 n + Range[-1, 1])], Except[1]]; Select[Range[770000], DivisorSigma[0, #] == atd[#] &] (* Jayanta Basu, Jul 06 2013 *)
  • PARI
    {for(n=1,770000,v1=[]; v2=[]; v3=[]; ds=divisors(2*n-1); for(k=2,matsize(ds)[2]-1, if(ds[k]%2>0,v1=concat(v1,ds[k]))); ds=divisors(2*n); for(k=2,matsize(ds)[2]-1,if(ds[k]%2>0, v2=concat(v2,ds[k]))); ds=divisors(2*n+1); for(k=2,matsize(ds)[2]-1,if(ds[k]%2>0,v3=concat(v3,ds[k]))); v=vecsort(concat(v1,concat(v2,v3))); if(matsize(v)[2]==numdiv(n),print1(n,",")))}

Extensions

Edited and extended by Klaus Brockhaus, Sep 01 2002

A073931 Numbers n such that the sum of the anti-divisors of n = 2n.

Original entry on oeis.org

77, 1568, 2768, 4775040
Offset: 1

Views

Author

Jason Earls, Sep 03 2002

Keywords

Comments

See A066272 for definition of anti-divisor.
a(5) > 10^10 - Hiroaki Yamanouchi, Mar 18 2015

Crossrefs

Cf. A066417.

Programs

  • Mathematica
    antiDivisorSum[n_] := Total[Select[Range[2, n - 1], Abs[Mod[n, #] - #/2] < 1 &]]
    Select[Range[1, 1600], antiDivisorSum[#] == 2*# &] (* Julien Kluge, Sep 19 2016 *)
  • Python
    from sympy import divisors
    A073931 = [n for n in range(3,10**5) if sum([2*d for d in divisors(n) if n > 2*d and n % (2*d)] + [d for d in divisors(2*n-1) if n > d >=2 and n % d] + [d for d in divisors(2*n+1) if n > d >=2 and n % d]) == 2*n]
    # Chai Wah Wu, Aug 13 2014

A074751 Numbers k such that the sum of the anti-divisors of k = sum of proper divisors (or aliquot parts) of k.

Original entry on oeis.org

1, 4, 44, 260, 1350, 6284, 6954, 13364, 273366, 333546, 466614, 4659934050
Offset: 1

Views

Author

Jason Earls, Sep 06 2002

Keywords

Comments

Integers k such that A066417(k) = A001065(k)
a(13) > 10^10. - Hiroaki Yamanouchi, Mar 18 2015

Crossrefs

Programs

  • PARI
    spd(n) = if( n==0, 0, sigma(n) - n); \\ A001065
    sad(n) = my(k); if(n>1, k=valuation(n, 2); sigma(2*n+1)+sigma(2*n-1)+sigma(n/2^k)*2^(k+1)-6*n-2, 0); \\ A066417
    isok(k) = sad(k) == spd(k); \\ Michel Marcus, Mar 30 2025

Extensions

a(12) from Hiroaki Yamanouchi, Mar 18 2015

A074898 Impossible values for sum of anti-divisors of n.

Original entry on oeis.org

1, 6, 7, 9, 11, 15, 17, 20, 21, 25, 26, 27, 29, 31, 33, 35, 37, 38, 43, 44, 45, 47, 49, 51, 53, 59, 61, 62, 63, 65, 67, 68, 69, 71, 73, 75, 77, 79, 81, 82, 83, 85, 87, 89, 91, 93, 95, 97, 99, 100, 103, 105, 109, 111, 113, 115, 117, 119, 120, 121, 123, 125, 127, 128, 129, 131, 133, 134, 135, 137, 139, 141, 143, 145, 146, 149, 151, 153, 155, 157, 158, 159, 161, 163, 165, 167, 168, 169, 170, 171
Offset: 1

Views

Author

Jason Earls, Sep 14 2002

Keywords

Comments

See A066272 for definition of anti-divisor.

Crossrefs

Extensions

More terms from Paolo P. Lava, Jul 06 2011
Previous Showing 41-50 of 142 results. Next