cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A154588 Numbers that can be expressed as the sum of the first j integer numbers or the first k nonprime numbers, with j and k >=1.

Original entry on oeis.org

1, 28, 435, 10296, 415416, 1062153, 3703281, 426626655, 782002378, 102886232631, 1636197988776, 2749764593278, 61972139524851, 813577626225078, 1604393353172781, 3603538956517305, 44000970048906445, 83556903098276790, 208955344344897381
Offset: 1

Views

Author

Paolo P. Lava & Giorgio Balzarotti, Jan 16 2009, Jan 19 2009

Keywords

Comments

The indices (j,k) where A000217(j) = A051349(k) are (1,1), (7,5), (29,23), (143,123), (911,823), (1457,1327), (2721,2501), (29210,27488), (39547,37295) , (453621,433381) , (1808976,1737137) , (2345107,2253859) , (11133026,10746793), (40338012,39053670), (56646153,54880858) , (84894510,82314170) , (296651209,288273745), (408795555,397457085), (646460121,628975505). - Donovan Johnson, Sep 11 2009

Examples

			28 = A000217(7) = A051349(5).
435 = A000217(19) = A051349(23).
10296 = A000217(143) = A051349(123).
		

Crossrefs

Programs

  • Mathematica
    Module[{nn=10^7,np},np=Select[Range[nn],!PrimeQ[#]&];Intersection[Accumulate[Range[ nn]],Accumulate[ np]]] (* The program generates the first 12 terms of the sequence. *) (* Harvey P. Dale, Feb 08 2024 *)

Formula

(A000217 INTERSECT A051349) MINUS {0}. - R. J. Mathar, Jan 21 2009

Extensions

10256 replaced with 10296 and two more terms added by R. J. Mathar, Jan 21 2009
Extended beyond a(9) by Donovan Johnson, Sep 11 2009

A365019 Triangular numbers that for some k >= 0 are also the sum of the first k perfect powers.

Original entry on oeis.org

0, 1, 159284476
Offset: 1

Views

Author

Ilya Gutkovskiy, Aug 16 2023

Keywords

Examples

			159284476 is a term because 159284476 = 1 + 2 + 3 + 4 + ... + 17848 = 1 + 4 + 8 + 9 + ... + 574564 = 1^2 + 2^2 + 2^3 + 3^2 + ... + 758^2.
		

Crossrefs

Programs

  • Mathematica
    Join[{0}, Select[Accumulate[Select[Range[574564], # == 1 || GCD @@ FactorInteger[#][[All, 2]] > 1 &]], IntegerQ[Sqrt[8 # + 1]] &]]
Previous Showing 11-12 of 12 results.