cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A277520 Denominator of 3F2([3*n, -n, n+1],[2*n+1, n+1/2], 1).

Original entry on oeis.org

1, 3, 25, 147, 1089, 20449, 48841, 312987, 55190041, 14322675, 100100025, 32065374675, 4546130625, 29873533563, 1859904071089, 4089135109921, 9399479144449, 22568149425822049, 1293753708921104809, 2835106739783283, 3289668853728536041
Offset: 0

Views

Author

Seiichi Manyama, Oct 19 2016

Keywords

Comments

Neil Calkin found the closed forms of 3F2([3*n, -n, n+1],[2*n+1, n+1/2], 1) in 2007.

References

  • Jonathan Borwein, David Bailey, Mathematics by Experiment, 2nd Edition: Plausible Reasoning in the 21st Century.

Crossrefs

Cf. A005810, A052203, A066802, A187364, A277170 (numerators).

Programs

  • Mathematica
    a[n_] := HypergeometricPFQ[{3n, -n, n+1}, {2n+1, n+1/2}, 1] // Denominator;
    Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Oct 22 2016 *)

Formula

(s(n) =) 3F2([3*n, -n, n+1],[2*n+1, n+1/2], 1) = A277170(n) / a(n).
s(2k) = (A005810(k) / A066802(k))^2 = (((4k)! * (3k)!) / ((6k)! * k!))^2.
s(2k+1) = -1/3 * (A052203(k) / A187364(k))^2 = -1/3 * (((4k+1)! * (3k)!) / ((6k+1)! * k!))^2.

A364519 Square array read by ascending antidiagonals: T(n,k) = [x^(3*k)] ( (1 + x)^(n+3)/(1 - x)^(n-3) )^k for n, k >= 0.

Original entry on oeis.org

1, 1, 0, 1, -4, -20, 1, 0, 28, 0, 1, 20, -84, -220, 924, 1, 64, 924, 0, 1820, 0, 1, 140, 12012, 48620, 16796, -15504, -48620, 1, 256, 60060, 2621440, 2704156, 0, 134596, 0, 1, 420, 204204, 29745716, 608435100, 155117520, -3801900, -1184040, 2704156, 1, 640, 554268, 187432960, 15628090140, 146028888064, 9075135300, 0, 10518300, 0
Offset: 0

Views

Author

Peter Bala, Aug 07 2023

Keywords

Comments

Compare with A364303 and A364518.
Given two sequences of integers c = (c_1, c_2, ..., c_K) and d = (d_1, d_2, ..., d_L), where c_1 + ... + c_K = d_1 + ... + d_L, we can define the factorial ratio sequence u_n(c, d) = (c_1*n)!*(c_2*n)!* ... *(c_K*n)!/ ( (d_1*n)!*(d_2*n)!* ... *(d_L*n)! ) and ask whether it is integral for all n >= 0. The integer L - K is called the height of the sequence. Bober completed the classification of integral factorial ratio sequences of height 1 (see A295431).
Each row of the present table is an integral factorial ratio sequence of height 1. It is usually assumed that the c's and d's are integers but here some of the c's and d's are half-integers. See A276098 and the cross references there for further examples of this type.
It is known that A005810, the unsigned version of row 1, satisfies the supercongruences u(n*p^r) == u(n*p^(r-1)) (mod p^(3*r)) for all primes p >= 5 and all positive integers n and r. We conjecture that each row sequence of the table satisfies the same supercongruences.

Examples

			Square array begins:
 n\k| 0    1       2          3             4                5
  - + - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  0 | 1    0     -20          0           924                0  ... see A066802
  1 | 1   -4      28       -220          1820           -15504  ... see A005810
  2 | 1    0     -84          0         16796                0
  3 | 1   20     924      48620       2704156        155117520  ... A066802
  4 | 1   64   12012    2621440     608435100     146028888064  ... A364520
  5 | 1  140   60060   29745716   15628090140    8480843582640  ... A211420
		

Crossrefs

Cf. A066802 (row 3, also row 0 unsigned and without 0's), A005810 (row 1 unsigned), A364520 (row 4), A211420 (row 5).

Programs

  • Maple
    T(n,k) := add( binomial((n+3)*k, j)*binomial(n*k-j-1, 3*k-j), j = 0..3*k):
    # display as a square array
    seq(print(seq(T(n, k), k = 0..10)), n = 0..10);
    # display as a sequence
    seq(seq(T(n-k, k), k = 0..n), n = 0..10);
  • PARI
    T(n,k) = sum(j = 0, 3*k, binomial((n+3)*k, j)*binomial(n*k-j-1, 3*k-j));
    lista(nn) = for( n=0, nn, for (k=0, n, print1(T(n-k, k), ", "))); \\ Michel Marcus, Aug 13 2023

Formula

T(n,k) = Sum_{j = 0..3*k} binomial((n+3)*k, j)*binomial(n*k-j-1, 3*k-j).
For n >= 3, T(n,k) = binomial(n*k-1,3*k) * hypergeom([-(n+3)*k, -3*k], [1 - n*k], -1) = ((n+3)*k)!*((n-3)*k/2)!/(((n+3)*k/2)!*((n-3)*k)!*(3*k)!) by Kummer's Theorem.
The row generating functions are algebraic functions over the field of rational functions Q(x).

A387249 a(n) = 10/(n + 1) * Catalan(3*n).

Original entry on oeis.org

10, 25, 440, 12155, 416024, 16158075, 682341000, 30582833775, 1433226830360, 69533550916004, 3468169547356640, 176946775343535925, 9199844912200348840, 486018122664268428850, 26029619941269629306160, 1410698658798280045783575, 77251704848334920869407000, 4269325372507953547350453420
Offset: 0

Views

Author

Peter Bala, Aug 24 2025

Keywords

Comments

Compare with Catalan(n) = 1/(n + 1) * binomial(2*n, n).
For r >= 2, there is a constant K_r such that K_r/(n + 1) * Catalan(r*n) is integral for all n.

Crossrefs

Programs

  • Maple
    seq( 10/((n+1)*(3*n+1)) * binomial(6*n, 3*n), n = 0..20);
  • Mathematica
    A387249[n_] := 10*CatalanNumber[3*n]/(n + 1); Array[A387249, 20, 0] (* Paolo Xausa, Sep 02 2025 *)

Formula

a(n) = 10/((n + 1)*(3*n + 1)) * binomial(6*n, 3*n).
a(n) = (3*n + 2)/2 * (16*Catalan(3*n) - 8*Catalan(3*n+1) + Catalan(3n+2)) (shows a(n) to be an integer since Catalan(n) is odd iff n = 2^k - 1 for some k, so Catalan(3*n+2) is always even).
a(n) = (3*n + 2)/2 * A007272(3*n).
a(n) = 8*(2*n - 1)*(6*n - 1)*(6*n - 5)/((n + 1)*(3*n + 1)*(3*n - 1)) * a(n-1) with a(0) = 10.
a(n) ~ 10/(sqrt(27*Pi)) * 64^n/n^(5/2).
E.g.f.: 10*hypergeom([1/6, 1/2, 5/6], [2/3, 4/3, 2], 64*x). - Stefano Spezia, Aug 27 2025

A361949 Triangle read by rows. T(n, k) = binomial(3*n - 1, 3*k - 1).

Original entry on oeis.org

1, 10, 1, 28, 56, 1, 55, 462, 165, 1, 91, 2002, 3003, 364, 1, 136, 6188, 24310, 12376, 680, 1, 190, 15504, 125970, 167960, 38760, 1140, 1, 253, 33649, 490314, 1352078, 817190, 100947, 1771, 1, 325, 65780, 1562275, 7726160, 9657700, 3124550, 230230, 2600, 1
Offset: 1

Views

Author

Peter Luschny, Mar 31 2023

Keywords

Examples

			Table T(n, k) starts:
  [1]   1;
  [2]  10,     1;
  [3]  28,    56,       1;
  [4]  55,   462,     165,       1;
  [5]  91,  2002,    3003,     364,       1;
  [6] 136,  6188,   24310,   12376,     680,       1;
  [7] 190, 15504,  125970,  167960,   38760,    1140,      1;
  [8] 253, 33649,  490314, 1352078,  817190,  100947,   1771,    1;
  [9] 325, 65780, 1562275, 7726160, 9657700, 3124550, 230230, 2600, 1.
		

Crossrefs

Cf. A082365 (row sums), A228888 (subdiagonal), A060544 (column 1), A066802 (central column).

Programs

  • Maple
    T := (n, k) -> binomial(3*n - 1, 3*k - 1):
    seq(print(seq(T(n, k), k = 1..n)), n = 1..8);
Previous Showing 11-14 of 14 results.