A277520
Denominator of 3F2([3*n, -n, n+1],[2*n+1, n+1/2], 1).
Original entry on oeis.org
1, 3, 25, 147, 1089, 20449, 48841, 312987, 55190041, 14322675, 100100025, 32065374675, 4546130625, 29873533563, 1859904071089, 4089135109921, 9399479144449, 22568149425822049, 1293753708921104809, 2835106739783283, 3289668853728536041
Offset: 0
- Jonathan Borwein, David Bailey, Mathematics by Experiment, 2nd Edition: Plausible Reasoning in the 21st Century.
-
a[n_] := HypergeometricPFQ[{3n, -n, n+1}, {2n+1, n+1/2}, 1] // Denominator;
Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Oct 22 2016 *)
A364519
Square array read by ascending antidiagonals: T(n,k) = [x^(3*k)] ( (1 + x)^(n+3)/(1 - x)^(n-3) )^k for n, k >= 0.
Original entry on oeis.org
1, 1, 0, 1, -4, -20, 1, 0, 28, 0, 1, 20, -84, -220, 924, 1, 64, 924, 0, 1820, 0, 1, 140, 12012, 48620, 16796, -15504, -48620, 1, 256, 60060, 2621440, 2704156, 0, 134596, 0, 1, 420, 204204, 29745716, 608435100, 155117520, -3801900, -1184040, 2704156, 1, 640, 554268, 187432960, 15628090140, 146028888064, 9075135300, 0, 10518300, 0
Offset: 0
Square array begins:
n\k| 0 1 2 3 4 5
- + - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
0 | 1 0 -20 0 924 0 ... see A066802
1 | 1 -4 28 -220 1820 -15504 ... see A005810
2 | 1 0 -84 0 16796 0
3 | 1 20 924 48620 2704156 155117520 ... A066802
4 | 1 64 12012 2621440 608435100 146028888064 ... A364520
5 | 1 140 60060 29745716 15628090140 8480843582640 ... A211420
-
T(n,k) := add( binomial((n+3)*k, j)*binomial(n*k-j-1, 3*k-j), j = 0..3*k):
# display as a square array
seq(print(seq(T(n, k), k = 0..10)), n = 0..10);
# display as a sequence
seq(seq(T(n-k, k), k = 0..n), n = 0..10);
-
T(n,k) = sum(j = 0, 3*k, binomial((n+3)*k, j)*binomial(n*k-j-1, 3*k-j));
lista(nn) = for( n=0, nn, for (k=0, n, print1(T(n-k, k), ", "))); \\ Michel Marcus, Aug 13 2023
A387249
a(n) = 10/(n + 1) * Catalan(3*n).
Original entry on oeis.org
10, 25, 440, 12155, 416024, 16158075, 682341000, 30582833775, 1433226830360, 69533550916004, 3468169547356640, 176946775343535925, 9199844912200348840, 486018122664268428850, 26029619941269629306160, 1410698658798280045783575, 77251704848334920869407000, 4269325372507953547350453420
Offset: 0
-
seq( 10/((n+1)*(3*n+1)) * binomial(6*n, 3*n), n = 0..20);
-
A387249[n_] := 10*CatalanNumber[3*n]/(n + 1); Array[A387249, 20, 0] (* Paolo Xausa, Sep 02 2025 *)
A361949
Triangle read by rows. T(n, k) = binomial(3*n - 1, 3*k - 1).
Original entry on oeis.org
1, 10, 1, 28, 56, 1, 55, 462, 165, 1, 91, 2002, 3003, 364, 1, 136, 6188, 24310, 12376, 680, 1, 190, 15504, 125970, 167960, 38760, 1140, 1, 253, 33649, 490314, 1352078, 817190, 100947, 1771, 1, 325, 65780, 1562275, 7726160, 9657700, 3124550, 230230, 2600, 1
Offset: 1
Table T(n, k) starts:
[1] 1;
[2] 10, 1;
[3] 28, 56, 1;
[4] 55, 462, 165, 1;
[5] 91, 2002, 3003, 364, 1;
[6] 136, 6188, 24310, 12376, 680, 1;
[7] 190, 15504, 125970, 167960, 38760, 1140, 1;
[8] 253, 33649, 490314, 1352078, 817190, 100947, 1771, 1;
[9] 325, 65780, 1562275, 7726160, 9657700, 3124550, 230230, 2600, 1.
-
T := (n, k) -> binomial(3*n - 1, 3*k - 1):
seq(print(seq(T(n, k), k = 1..n)), n = 1..8);
Comments