cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 25 results. Next

A139446 Numbers n such that primorial(n)/2 - 32 is prime.

Original entry on oeis.org

4, 5, 6, 8, 10, 12, 23, 38, 50, 65, 67, 95, 100, 108, 114, 281, 835, 894, 1103, 3442, 6629
Offset: 1

Views

Author

Artur Jasinski, Apr 21 2008

Keywords

Comments

a(22) > 25,000. - Robert Price, Jan 02 2017

Crossrefs

Programs

  • Mathematica
    k = 1; a = {}; Do[k = k*Prime[n]; If[PrimeQ[k - 32] && k>32, Print[n]; AppendTo[a, n]], {n, 2, 325}]; a

Extensions

Drop 2,3 and correct program, a(17)-a(19) from Ray Chandler, Jun 16 2013
a(20)-a(21) from Robert Price, Jan 02 2017

A139447 Numbers n such that primorial(n)/2 + 64 is prime.

Original entry on oeis.org

2, 3, 8, 11, 94, 127, 201, 211, 257, 259, 392, 1305, 5234, 13013, 13679, 16866, 23879
Offset: 1

Views

Author

Artur Jasinski, Apr 21 2008

Keywords

Comments

a(18) > 25000. - Robert Price, Mar 29 2017

Crossrefs

Programs

  • Mathematica
    k = 1/2; a = {}; Do[k = k*Prime[n]; If[PrimeQ[k + 64], Print[n]; AppendTo[a, n]], {n, 325}]; a

Extensions

a(12) from Ray Chandler, Jun 16 2013
a(13)-a(17) from Robert Price, Mar 29 2017

A139448 Numbers n such that primorial(n)/2 - 64 is prime.

Original entry on oeis.org

4, 5, 6, 7, 10, 13, 17, 18, 28, 32, 35, 38, 89, 115, 117, 224, 241, 353, 440, 1153, 2585, 3075, 3456, 4895, 7483, 7649, 8197, 8625, 13285, 19849, 24179, 24442
Offset: 1

Views

Author

Artur Jasinski, Apr 21 2008

Keywords

Comments

a(33) > 25000. - Robert Price, Apr 10 2017

Crossrefs

Programs

  • Mathematica
    k = 1; a = {}; Do[k = k*Prime[n]; If[PrimeQ[k - 64]&&k>64, Print[n]; AppendTo[a, n]], {n, 2, 325}]; a
    Flatten[Position[Rest[FoldList[Times,1,Prime[Range[600]]]],?(PrimeQ[ #/2-64]&&#/2>64&)]] (* _Harvey P. Dale, Mar 05 2013 *)
    Select[Range[4, 100], PrimeQ[Product[Prime[k], {k, 1, #}]/2 - 64] &] (* Robert Price, Apr 10 2017 *)

Extensions

a(18)-a(19) from Harvey P. Dale, Mar 05 2013
Drop 2 and correct programs, a(20)-a(21) from Ray Chandler, Jun 16 2013
a(22)-a(32) from Robert Price, Apr 10 2017

A139449 Numbers n such that primorial(n)/2 + 128 is prime.

Original entry on oeis.org

2, 4, 5, 7, 8, 10, 11, 23, 25, 67, 87, 125, 141, 242, 255, 258, 279, 316, 449, 578, 871, 1072, 1886, 2071, 3315, 18225
Offset: 1

Views

Author

Artur Jasinski, Apr 21 2008

Keywords

Comments

a(27) > 25000. - Robert Price, Apr 10 2017

Crossrefs

Programs

  • Mathematica
    k = 1/2; a = {}; Do[k = k*Prime[n]; If[PrimeQ[k + 128], Print[n]; AppendTo[a, n]], {n, 325}]; a
    Select[Range[0, 25000], PrimeQ[Product[Prime[k], {k, 1, #}]/2 + 128] &] (* Robert Price, Apr 10 2017 *)

Extensions

a(18)-a(24) from Ray Chandler, Jun 16 2013
a(25)-a(26) from Robert Price, Apr 10 2017

A139450 Numbers n such that primorial(n)/2 - 128 is prime.

Original entry on oeis.org

6, 7, 17, 26, 32, 40, 43, 391, 435, 1509, 1629, 2906, 3525, 5670, 8586, 12103, 12528, 16682
Offset: 1

Views

Author

Artur Jasinski, Apr 21 2008

Keywords

Comments

a(19) > 25,000. - Robert Price, May 02 2017

Crossrefs

Programs

  • Mathematica
    k = 1; a = {}; Do[k = k*Prime[n]; If[PrimeQ[k - 128]&&k>128, Print[n]; AppendTo[a, n]], {n, 2, 325}]; a

Extensions

Drop 3,4 and correct program, a(9)-a(12) from Ray Chandler, Jun 16 2013
a(13)-a(18) from Robert Price, May 02 2017

A139451 Numbers n such that primorial(n)/2 + 256 is prime.

Original entry on oeis.org

1, 3, 6, 7, 8, 13, 22, 33, 53, 58, 62, 142, 189, 220, 479, 496, 503, 760, 1464, 6503, 9477, 13861, 23881
Offset: 1

Views

Author

Artur Jasinski, Apr 21 2008

Keywords

Comments

a(24) > 25000. - Robert Price, May 21 2017

Crossrefs

Programs

  • Mathematica
    k = 1/2; a = {}; Do[k = k*Prime[n]; If[PrimeQ[k + 256], Print[n]; AppendTo[a, n]], {n, 325}]; a

Extensions

a(1)=1 inserted and program corrected, a(15)-a(19) from Ray Chandler, Jun 16 2013
a(20)-a(23) from Robert Price, May 21 2017

A139452 Numbers n such that primorial(n)/2 - 256 is prime.

Original entry on oeis.org

6, 8, 16, 27, 66, 74, 168, 253, 458, 1310, 2665, 2681, 2718, 2836, 4921, 7356, 11466
Offset: 1

Views

Author

Artur Jasinski, Apr 21 2008

Keywords

Comments

a(18) > 25000. - Robert Price, May 22 2017

Crossrefs

Programs

  • Mathematica
    k = 1; a = {}; Do[k = k*Prime[n]; If[PrimeQ[k - 256]&&k>256, Print[n]; AppendTo[a, n]], {n, 2, 325}]; a

Extensions

Drop 3,4 and correct program, a(9)-a(14) from Ray Chandler, Jun 16 2013
a(15)-a(17) from Robert Price, May 22 2017

A139453 Numbers n such that primorial(n)/2 + 512 is prime.

Original entry on oeis.org

4, 5, 6, 7, 9, 12, 73, 129, 142, 144, 253, 455, 531, 734, 1009, 1193, 1553, 2449, 3309, 13534, 17513, 17832, 22852
Offset: 1

Views

Author

Artur Jasinski, Apr 21 2008

Keywords

Comments

a(24) > 25000. - Robert Price, May 22 2017

Crossrefs

Programs

  • Mathematica
    k = 1/2; a = {}; Do[k = k*Prime[n]; If[PrimeQ[k + 512], Print[n]; AppendTo[a, n]], {n, 325}]; a

Extensions

a(12)-a(18) from Ray Chandler, Jun 16 2013
a(19)-a(23) from Robert Price, May 22 2017

A139454 Numbers n such that primorial(n)/2 - 512 is prime.

Original entry on oeis.org

5, 6, 9, 10, 11, 12, 17, 18, 23, 36, 48, 62, 87, 112, 131, 400, 1606, 6136, 6519, 11700
Offset: 1

Views

Author

Artur Jasinski, Apr 21 2008

Keywords

Comments

a(21) > 25000. - Robert Price, Jul 02 2017

Crossrefs

Programs

  • Mathematica
    k = 1; a = {}; Do[k = k*Prime[n]; If[PrimeQ[k - 512]&&k>512, Print[n]; AppendTo[a, n]], {n, 2, 325}]; a (* corrected by Ray Chandler, Jun 16 2013 *)

Extensions

Dropped 2 and a(16)-a(17) from Ray Chandler, Jun 16 2013
a(18)-a(20) from Robert Price, Jul 02 2017

A139455 Numbers n such that primorial(n)/2 + 1024 is prime.

Original entry on oeis.org

3, 4, 5, 7, 11, 14, 15, 22, 30, 32, 37, 53, 83, 123, 156, 212, 215, 314, 331, 417, 555, 930, 3809, 3945, 15738
Offset: 1

Views

Author

Artur Jasinski, Apr 21 2008

Keywords

Comments

a(26) > 25000. - Robert Price, Jul 02 2017

Crossrefs

Programs

  • Mathematica
    k = 1/2; a = {}; Do[k = k*Prime[n]; If[PrimeQ[k + 1024], Print[n]; AppendTo[a, n]], {n, 325}]; a
  • PARI
    isok(n) = isprime(1024+prod(k=2, n, prime(k))); \\ Michel Marcus, Jul 02 2017

Extensions

a(18)-a(22) from Ray Chandler, Jun 16 2013
a(23)-a(25) from Robert Price, Jul 02 2017
Previous Showing 11-20 of 25 results. Next