cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 51 results. Next

A190481 Number of distinct integers with n digits which are the image of integers by the function Reverse and Add!.

Original entry on oeis.org

4, 14, 93, 256, 1793, 4872, 34107, 92590, 648154, 1759313, 12315269, 33427272, 233991155, 635119194, 4445835138, 12067267861, 84470877438, 229278099157, 1604946701532, 4356283914175, 30493987422124, 82769394462323, 579385761306789, 1572618495070552
Offset: 1

Views

Author

Aldo González Lorenzo, May 25 2011

Keywords

Comments

a(n) is the cardinality of the set of Image(Reverse and Add!) intersected with [10^(n-1), 10^n[. Here we suppose that the domain of the function Reverse and Add! is {1, 2, 3, ...}
There are 4, 50, 450, 4590, 45405,... (A232731) ways to obtain integers with n = 1,2,... digits as images under the function "Reverse and add!", but many result in the same image and are counted here only once. Example: 11+digrev(11) = 22 and 20+digrev(20)=22 contribute only once to the set of distinct images at n=2. - R. J. Mathar, Jun 17 2011

Examples

			Example: let RaA(x) be the function Reverse and Add!, then:
RaA(1)=2
RaA(2)=4
RaA(3)=6
RaA(4)=8
RaA(5)=10
RaA(6)=11, ...
So a(1) is the cardinal of {2,4,6,8}, which is 4:
		

Crossrefs

Programs

  • Maple
    A055642 := proc(n) max(1,1+ilog10(n)) ; end proc:
    A056964 := proc(n) n+digrev(n) ; end proc:
    A190481 := proc(n) local s,i,ra ; s := {} ; for i from 1 to 10^n do ra := A056964(i) ; if A055642( ra) = n then s := s union {ra}  ; end if; end do: nops(s) ; end proc:
    for n from 1 do print(n,A190481(n)) ; end do: # R. J. Mathar, Jun 17 2011

Formula

Empirical g.f.: x*(4 + 18*x + 23*x^2 - 29*x^3 - 58*x^4 - 34*x^5 - 81*x^6 - 45*x^7 - 32*x^8 - 9*x^9) / ((1 + x)*(1 - 19*x^2)*(1 - 2*x + x^2 - x^3)*(1 + 2*x + x^2 + x^3)). - Colin Barker, Mar 20 2017

Extensions

a(9)-a(10) from Lars Blomberg, Dec 01 2013
a(11)-a(24) from Hiroaki Yamanouchi, Sep 04 2014

A227525 Squares which can be represented as sum of a prime and its reverse in at least one way.

Original entry on oeis.org

4, 121, 625, 94249, 698896, 1517824, 5313025, 6325225, 6895876, 6948496, 7706176, 15665764, 63600625, 95199049, 170198116, 449948944, 522808225, 562069264, 1101576100, 1183979281, 1254505561, 1271564281, 1615718416, 4045214404, 9504885049, 10989328900
Offset: 1

Views

Author

Shyam Sunder Gupta, Jul 14 2013

Keywords

Examples

			121=29+92
		

Crossrefs

Cf. A067030.

Programs

  • Mathematica
    SquareQ[n_Integer?Positive] := IntegerQ[Sqrt[n]] ; Union[Select[ Table[ Prime[x] + FromDigits[ Reverse[ IntegerDigits[ Prime[x]]]], {x,  5761455}], SquareQ]]
    Select[Union[#+IntegerReverse[#]&/@Prime[Range[10^6]]],IntegerQ[Sqrt[#]]&] (* The program generates the first 12 terms of the sequence. *) (* Harvey P. Dale, Sep 14 2022 *)

Extensions

a(20)-a(26) from Giovanni Resta, Jul 18 2013

A335978 Numbers m of the form abs(k - reverse(k)) for at least one k.

Original entry on oeis.org

0, 9, 18, 27, 36, 45, 54, 63, 72, 81, 90, 99, 180, 189, 198, 270, 279, 297, 360, 369, 396, 450, 459, 495, 540, 549, 594, 630, 639, 693, 720, 729, 792, 810, 819, 891, 900, 909, 990, 999, 1089, 1179, 1188, 1269, 1278, 1359, 1368, 1449, 1458, 1539, 1548, 1629, 1638, 1719, 1728, 1800, 1809, 1818, 1890, 1908, 1980, 1989, 1998, 2079
Offset: 1

Views

Author

Michael Greaney, Jul 03 2020

Keywords

Comments

All terms are divisible by 9.
Let f(k) = k - reverse(k). Then f(reverse(k)) = -f(k), since f(reverse(k)) = reverse(k) - reverse(reverse(k)) = reverse(k) - k = - (k - reverse(k)) = -f(k).
Iteration of the function f(k) = k - reverse(k) leads to A072140, A072141, A072142, and A072143.

Crossrefs

Dividing by 9 gives A334145.

A067737 Integers n such that [number of integers k such that k is not of the form m + reverse(m) for any m and n occurs in the "Reverse and Add!" trajectory of k] is greater than [number of integers k such that n = k + reverse(k)].

Original entry on oeis.org

44, 66, 88, 110, 121, 132, 154, 176, 198, 242, 363, 404, 444, 484, 505, 524, 545, 564, 585, 605, 606, 625, 646, 665, 686, 707, 726, 747, 766, 787, 808, 827, 847, 848, 867, 888, 909, 928, 949, 968, 989, 1010, 1029, 1050, 1069, 1089, 1090, 1111, 1130, 1151
Offset: 1

Views

Author

Klaus Brockhaus, Feb 04 2002

Keywords

Comments

Integers n such that n = A067030(j) for some j and A067284(j) > A067032(j).

Examples

			44 = A067030(13) is in the sequence, since there are five integers k (viz. 5, 13, 20, 31, 40; A067284(13) = 5) such that k is not of the form m + reverse(m) for any m and 44 occurs in the "Reverse and Add!" trajectory of k, but only four integers k (viz. 13, 22, 31, 40; A067032(13) = 4) such that 44 = k + reverse(k).
		

Crossrefs

A068064 a(n) = number of integers k such that palindrome A068062(n) = k + reverse(k).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 9, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 1, 10, 3, 4, 5, 6, 7, 8, 9, 10, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 4, 8, 12, 16, 20, 24
Offset: 1

Views

Author

Klaus Brockhaus, Feb 16 2002

Keywords

Comments

The number of representations of a palindrome as a + b, where b = reverse(a); if a = reverse(b) and a is different from b, then a + b and b + a count as different representations.

Examples

			a(9) = 4, since A068062(9) = 44 and for k = 13, 22, 31, 40 we have 44 = k + reverse(k).
a(16) = 9, since A068062(16) = 121 and for k = 29, 38, 47, 56, 65, 74, 83, 92, 110 we have 121 = k + reverse(k).
		

Crossrefs

Extensions

Offset corrected by Sean A. Irvine, Jan 23 2024

A071914 Numbers n of the form k + reverse(k) for exactly three k.

Original entry on oeis.org

33, 176, 303, 323, 343, 363, 383, 403, 423, 443, 463, 483, 1221, 1616, 1636, 1656, 1676, 1696, 1716, 1736, 1756, 1776, 1796, 2761, 3003, 4983, 12021, 12421, 12621, 12821, 13021, 13221, 13421, 13621, 13821, 16016, 17996, 18238, 19778, 26161
Offset: 0

Views

Author

Klaus Brockhaus, Jun 13 2002

Keywords

Examples

			33 = 12 + 21 = 21 + 12 = 30 + 03, 176 = 79 + 97 = 88 + 88 = 97 + 79, 383 = 142 + 241 = 241 + 142 = 340 + 043.
		

Crossrefs

A072427 Numbers n for which there is a unique k such that n = k + reverse(k).

Original entry on oeis.org

0, 2, 4, 6, 8, 10, 11, 12, 14, 16, 18, 101, 141, 161, 181, 198, 201, 221, 241, 261, 281, 1001, 1818, 1838, 1858, 1878, 1898, 1918, 1938, 1958, 1978, 1998, 2981, 10001, 10201, 10401, 10601, 10801, 11001, 11201, 11401, 11601, 11801, 18018, 19998
Offset: 1

Views

Author

Klaus Brockhaus, Jun 17 2002

Keywords

Comments

Subsequence of A067030. First term is A072041(1). A068065 is a subsequence of this sequence.

Examples

			18 = 9 + 9; 261 = 180 + 081; 11401 = 10700 + 00701.
		

Crossrefs

Programs

  • ARIBAS
    var n,k,c,i,rev: integer; st,nst: string; end; m := 1; for n := 0 to 29000 do k := n div 2; c := 0; while k <= n and c < m + 1 do st := itoa(k); nst := ""; for i := 0 to length(st) - 1 do nst := concat(st[i],nst); end; rev := atoi(nst); if n = k + rev then inc(c); if k mod 10 <> 0 and k <> rev then inc(c); end; end; inc(k); end; if c = m then write(n,","); end; end;
  • Mathematica
    revAdd[n_] := n + FromDigits[Reverse[IntegerDigits[n]]]; ra=Table[revAdd[n], {n, 0, 10^5}]; t=Sort[Tally[ra]]; First /@ Select[t, #[[2]] == 1 && #[[1]] <= Length[ra] &]

A072428 Numbers n for which there are exactly four k such that n = k + reverse(k).

Original entry on oeis.org

44, 165, 404, 424, 444, 464, 484, 504, 524, 544, 564, 584, 1331, 1515, 1535, 1555, 1575, 1595, 1615, 1635, 1655, 1675, 1695, 2112, 2651, 3872, 4004, 5984, 13031, 13231, 13431, 13631, 13831, 14031, 14231, 14431, 14631, 14831, 15015, 16995
Offset: 1

Views

Author

Klaus Brockhaus, Jun 17 2002

Keywords

Comments

Subsequence of A067030. First term is A072041(4).
Includes 4*(10^k+1) for k>=1. - Robert Israel, Jul 12 2019

Examples

			44 = k + reverse(k) for k = 13, 22, 31, 40; 1331 = k + reverse(k) for k = 1030, 1120, 1210, 1300.
		

Crossrefs

Programs

  • ARIBAS
    var n,k,c,i,rev: integer; st,nst: string; end; m := 4; for n := 0 to 20000 do k := n div 2; c := 0; while k <= n and c < m + 1 do st := itoa(k); nst := ""; for i := 0 to length(st) - 1 do nst := concat(st[i],nst); end; rev := atoi(nst); if n = k + rev then inc(c); if k mod 10 <> 0 and k <> rev then inc(c); end; end; inc(k); end; if c = m then write(n,","); end; end;
  • Maple
    N:= 10^5:
    revdigs:= proc(n) local L, i;
      L:= convert(n, base, 10);
      add(L[-i]*10^(i-1), i=1..nops(L))
    end proc:
    V:= Vector(N):
    for x from 1 to N do
      v:= x + revdigs(x);
      if v <= N then V[v]:= V[v]+1 fi;
    od:
    select(t -> V[t]=4, [$1..N]); # Robert Israel, Jul 12 2019

Extensions

Offset changed by Robert Israel, Jul 12 2019

A072429 Numbers n for which there are exactly five k such that n = k + reverse(k).

Original entry on oeis.org

55, 154, 505, 525, 545, 565, 585, 605, 625, 645, 665, 685, 1414, 1434, 1441, 1454, 1474, 1494, 1514, 1534, 1554, 1574, 1594, 2541, 5005, 6985, 14014, 14041, 14241, 14441, 14641, 14841, 15041, 15241, 15441, 15641, 15841, 15994, 18458, 19558
Offset: 1

Views

Author

Klaus Brockhaus, Jun 17 2002

Keywords

Comments

Subsequence of A067030. First term is A072041(5).
Contains 5*(10^k+1) for k>=1. - Robert Israel, Jul 12 2019

Examples

			55 = k + reverse(k) for k = 14, 23, 32, 41, 50; 1441 = k + reverse(k) for k = 1040, 1130, 1220, 1310, 1400.
		

Crossrefs

Programs

  • ARIBAS
    var n,k,c,i,rev: integer; st,nst: string; end; m := 5; for n := 0 to 24600 do k := n div 2; c := 0; while k <= n and c < m + 1 do st := itoa(k); nst := ""; for i := 0 to length(st) - 1 do nst := concat(st[i],nst); end; rev := atoi(nst); if n = k + rev then inc(c); if k mod 10 <> 0 and k <> rev then inc(c); end; end; inc(k); end; if c = m then write(n,","); end; end;
  • Maple
    N:= 10^5:
    revdigs:= proc(n) local L, i;
      L:= convert(n, base, 10);
      add(L[-i]*10^(i-1), i=1..nops(L))
    end proc:
    V:= Vector(N):
    for x from 1 to N do
      v:= x + revdigs(x);
      if v <= N then V[v]:= V[v]+1 fi;
    od:
    select(t -> V[t]=5, [$1..N]); # Robert Israel, Jul 12 2019

A072430 Numbers n for which there are exactly six k such that n = k + reverse(k).

Original entry on oeis.org

66, 143, 606, 626, 646, 666, 686, 706, 726, 746, 766, 786, 1313, 1333, 1353, 1373, 1393, 1413, 1433, 1453, 1473, 1493, 1551, 2222, 2431, 3113, 3762, 4873, 6006, 7986, 13013, 14993, 15051, 15251, 15451, 15651, 15851, 16051, 16126, 16251, 16451
Offset: 1

Views

Author

Klaus Brockhaus, Jun 17 2002

Keywords

Comments

Subsequence of A067030. First term is A072041(6).
Includes 6*(10^k+1) for k >= 1. - Robert Israel, Jul 12 2019

Examples

			66 = k + reverse(k) for k = 15, 24, 33, 42, 51, 60; 626 = k + reverse(k) for k = 115, 214, 313, 412, 511, 610.
		

Crossrefs

Programs

  • ARIBAS
    var n,k,c,i,rev: integer; st,nst: string; end; m := 6; for n := 0 to 17500 do k := n div 2; c := 0; while k <= n and c < m + 1 do st := itoa(k); nst := ""; for i := 0 to length(st) - 1 do nst := concat(st[i],nst); end; rev := atoi(nst); if n = k + rev then inc(c); if k mod 10 <> 0 and k <> rev then inc(c); end; end; inc(k); end; if c = m then write(n,","); end; end;
  • Maple
    N:= 10^5:
    revdigs:= proc(n) local L, i;
      L:= convert(n, base, 10);
      add(L[-i]*10^(i-1), i=1..nops(L))
    end proc:
    V:= Vector(N):
    for x from 1 to N do
      v:= x + revdigs(x);
      if v <= N then V[v]:= V[v]+1 fi;
    od:
    select(t -> V[t]=6, [$1..N]); # Robert Israel, Jul 12 2019

Extensions

Offset changed to 1 by Robert Israel, Jul 12 2019
Previous Showing 31-40 of 51 results. Next