A338093 Composite numbers which are multiples of the sum of the squares of their prime factors (taken with multiplicity).
16, 27, 256, 540, 756, 1200, 1890, 2940, 3060, 3125, 4050, 4200, 4320, 5460, 6000, 6048, 7920, 8232, 10080, 10164, 10368, 10530, 11232, 11286, 12960, 13104, 13524, 13800, 14000, 14157, 14175, 15708, 15960, 17280, 18200, 18480, 19278, 19683, 19992, 20295, 23814
Offset: 1
Keywords
Examples
16 = 2*2*2*2 = 1*(2^2 + 2^2 + 2^2 + 2^2). 7920 = 2*2*2*2*3*3*5*11 = 44*(2^2 + 2^2 + 2^2 + 2^2 + 3^2 + 3^2 + 5^2 + 11^2).
Links
- Robert Israel, Table of n, a(n) for n = 1..2000
- Carlos Rivera, Puzzle 625. Sum of squares of prime divisors, The Prime Puzzles and Problems Connection.
- Carlos Rivera, Puzzle 1019. Follow-up to Puzzle 625, The Prime Puzzles and Problems Connection.
Crossrefs
Cf. A067666.
Programs
-
Maple
filter:= proc(n) local t; if isprime(n) then return false fi; n mod add(t[1]^2*t[2],t=ifactors(n)[2]) = 0 end proc: select(filter, [$4..30000]); # Robert Israel, Oct 16 2020
-
Mathematica
Select[Range@20000,Mod[#,Total[Flatten[Table@@@FactorInteger@#]^2]]==0&]
-
PARI
isok(m) = if (!isprime(m) && (m>1), my(f=factor(m)); (m % sum(k=1, #f~, f[k,1]^2*f[k,2])) == 0); \\ Michel Marcus, Oct 11 2020
Comments