cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A175828 a(n) = (n*(6*n+1)+(n+2)*(-1)^n)/2.

Original entry on oeis.org

1, 2, 15, 26, 53, 74, 115, 146, 201, 242, 311, 362, 445, 506, 603, 674, 785, 866, 991, 1082, 1221, 1322, 1475, 1586, 1753, 1874, 2055, 2186, 2381, 2522, 2731, 2882, 3105, 3266, 3503, 3674, 3925, 4106, 4371, 4562, 4841, 5042, 5335, 5546, 5853, 6074
Offset: 0

Views

Author

Bruno Berselli, Sep 21 2010 - Sep 25 2010

Keywords

Comments

a(n) == A068073(n) (mod 4).
a(h) == 0 (mod 11) for h = 11*(k-floor((k-1)/3))-2*(-1)^(k+floor(k/3)) (cf. A175833).

Crossrefs

Programs

  • Magma
    [(n*(6*n+1)+(n+2)*(-1)^n)/2: n in [0..50]];
    
  • Magma
    I:=[1,2,15,26,53]; [n le 5 select I[n] else Self(n-1)+2*Self(n-2)-2*Self(n-3)-Self(n-4)+Self(n-5): n in [1..50]]; // Vincenzo Librandi, Aug 19 2013
  • Mathematica
    Table[(n (6 n + 1) + (n + 2) (-1)^n)/2, {n, 0, 50}]
    CoefficientList[Series[(1 + x + 11 x^2 + 9 x^3 + 2 x^4) / ((1 + x)^2 (1 - x)^3), {x, 0, 50}], x] (* Vincenzo Librandi, Aug 19 2013 *)
    LinearRecurrence[{1,2,-2,-1,1},{1,2,15,26,53},70] (* Harvey P. Dale, Jul 03 2019 *)

Formula

G.f.: (1+x+11*x^2+9*x^3+2*x^4)/((1+x)^2*(1-x)^3).
a(n)-a(n-1)-2*a(n-2)+2*a(n-3)+a(n-4)-a(n-5) = 0 for n>4.
a(n)-a(n-2)-(a(n-1)-a(n-3)) = 2*A010718(n-1) for n>2.
a(n)-a(n-2)+(a(n-1)-a(n-3)) = A142241(n-2) for n>2.

A262734 Period 16: repeat (1, 2, 3, 4, 5, 6, 7, 8, 9, 8, 7, 6, 5, 4, 3, 2).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 8, 7, 6, 5, 4, 3, 2, 1, 2, 3, 4, 5, 6, 7, 8, 9, 8, 7, 6, 5, 4, 3, 2, 1, 2, 3, 4, 5, 6, 7, 8, 9, 8, 7, 6, 5, 4, 3, 2, 1, 2, 3, 4, 5, 6, 7, 8, 9, 8, 7, 6, 5, 4, 3, 2, 1, 2, 3, 4, 5, 6, 7, 8, 9, 8, 7, 6, 5, 4, 3, 2, 1, 2, 3, 4, 5, 6, 7, 8, 9, 8, 7, 6, 5, 4, 3, 2, 1, 2, 3, 4, 5, 6, 7, 8, 9
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 29 2015

Keywords

Comments

Decimal expansion of 111111112/900000009.
For n which lies in the interval [16*(k-1), 8*(2*k-1)], where k>0 -> pattern {1, 2, 3, 4, 5, 6, 7, 8, 9}; for n which lies in the interval [16*k - 7, 16*k - 1], where k>0 -> pattern {8, 7, 6, 5, 4, 3, 2}.

Crossrefs

Programs

  • Magma
    &cat[[1,2,3,4,5,6,7,8,9,8,7,6,5,4,3,2]: n in [0..10]]; // Vincenzo Librandi, Sep 29 2015
    
  • Mathematica
    LinearRecurrence[{1, 0, 0, 0, 0, 0, 0, -1, 1}, {1, 2, 3, 4, 5, 6, 7, 8, 9}, 120] (* Vincenzo Librandi, Sep 29 2015 *)
  • PARI
    Vec(-(2*x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1)/((x-1)*(x^8+1)) + O(x^100)) \\ Colin Barker, Sep 29 2015
    
  • PARI
    111111112/900000009. \\ Altug Alkan, Sep 29 2015
    
  • PARI
    vector(200, n, default(realprecision, n+2); floor(111111112/900000009*10^n)%10) \\ Altug Alkan, Nov 12 2015

Formula

-1 + a(16*(k - 1)) = -2 + a(8*k + 3*(-1)^k - 4) = -3 + a(2*(4*k + (-1)^k - 2)) = -4 + a(8*k + (-1)^k - 4) = -5 + a(4*(2*k - 1)) = -6 + a(8*k - (-1)^k - 4) = -7 + a(-2*(-4*k + (-1)^k + 2)) = -8 + a(8*k - 3*(-1)^k - 4) = -9 + a(8*(2*k - 11)) = 0, for k>0.
a(0) = 1, a(n) = a(n+1) - 1, for 16*(k - 1) <= n < 8*(2*k - 1), and a(n) = a(n + 1) + 1, for 8*(2*k - 1) <= n < 16*k, where k>0.
From Colin Barker, Sep 29 2015: (Start)
a(n) = a(n-1) - a(n-8) + a(n-9) for n>8.
G.f.: -(2*x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1) / ((x-1)*(x^8+1)). (End)
Previous Showing 11-12 of 12 results.