A249189 Decimal expansion of Hayman's constant in Landau's Theorem.
4, 3, 7, 6, 8, 7, 9, 2, 3, 0, 4, 5, 2, 9, 5, 3, 2, 7, 7, 6, 7, 3, 5, 3, 9, 8, 8, 1, 4, 0, 8, 9, 2, 9, 0, 8, 6, 5, 1, 8, 7, 4, 5, 4, 4, 5, 6, 5, 1, 1, 3, 3, 4, 4, 4, 2, 3, 8, 5, 7, 2, 4, 2, 1, 1, 5, 8, 9, 0, 3, 8, 7, 6, 8, 9, 1, 8, 6, 5, 8, 9, 5, 5, 4, 2, 0, 6, 6, 2, 9, 9, 3, 5, 5, 1, 2, 1, 7, 2, 6, 3, 6
Offset: 1
Examples
4.37687923045295327767353988140892908651874544565...
References
- Steven R. Finch, Mathematical Constants II, Cambridge University Press, 2018, p. 421.
Links
- Steven Finch, Goldberg’s Zero-One Constants, May 21, 2014. [Cached copy, with permission of the author]
- W. K. Hayman, Some remarks on Schottky's theorem, Mathematical Proceedings of the Cambridge Philosophical Society, Vol. 43, No. 4 (1947), pp. 442-454.
- Wan Tzei Lai, The exact value of Hayman's constant in Landau's Theorem, Scientia Sinica, Vol. 22, No. 2 (1979), pp. 129-134.
- Wikipedia, Théorème de Landau, [in French].
Crossrefs
Cf. A068466.
Programs
-
Mathematica
K = (1/(4*Pi^2))*Gamma[1/4]^4; RealDigits[K, 10, 102] // First
-
PARI
(1/(4*Pi^2))*gamma(1/4)^4 \\ Michel Marcus, Oct 23 2014
Formula
K = (1/(4*Pi^2))*Gamma(1/4)^4.
Comments