cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-45 of 45 results.

A249189 Decimal expansion of Hayman's constant in Landau's Theorem.

Original entry on oeis.org

4, 3, 7, 6, 8, 7, 9, 2, 3, 0, 4, 5, 2, 9, 5, 3, 2, 7, 7, 6, 7, 3, 5, 3, 9, 8, 8, 1, 4, 0, 8, 9, 2, 9, 0, 8, 6, 5, 1, 8, 7, 4, 5, 4, 4, 5, 6, 5, 1, 1, 3, 3, 4, 4, 4, 2, 3, 8, 5, 7, 2, 4, 2, 1, 1, 5, 8, 9, 0, 3, 8, 7, 6, 8, 9, 1, 8, 6, 5, 8, 9, 5, 5, 4, 2, 0, 6, 6, 2, 9, 9, 3, 5, 5, 1, 2, 1, 7, 2, 6, 3, 6
Offset: 1

Views

Author

Jean-François Alcover, Oct 23 2014

Keywords

Comments

Named after the British mathematician Walter Kurt Hayman (1926-2020). - Amiram Eldar, Apr 15 2021

Examples

			4.37687923045295327767353988140892908651874544565...
		

References

  • Steven R. Finch, Mathematical Constants II, Cambridge University Press, 2018, p. 421.

Crossrefs

Cf. A068466.

Programs

  • Mathematica
    K = (1/(4*Pi^2))*Gamma[1/4]^4; RealDigits[K, 10, 102] // First
  • PARI
    (1/(4*Pi^2))*gamma(1/4)^4 \\ Michel Marcus, Oct 23 2014

Formula

K = (1/(4*Pi^2))*Gamma(1/4)^4.

A256591 Decimal expansion of Xi''(1/2) = 0.02297..., the second derivative of the Riemann Xi function at 1/2.

Original entry on oeis.org

0, 2, 2, 9, 7, 1, 9, 4, 4, 3, 1, 5, 1, 4, 5, 4, 3, 7, 5, 3, 5, 2, 4, 9, 8, 7, 6, 4, 9, 7, 6, 3, 2, 1, 7, 0, 2, 6, 4, 5, 9, 3, 0, 1, 3, 8, 3, 7, 5, 8, 9, 0, 6, 3, 4, 9, 9, 1, 4, 4, 6, 2, 2, 1, 6, 5, 1, 8, 3, 6, 3, 1, 8, 5, 8, 8, 9, 2, 5, 5, 3, 8, 0, 9, 6, 7, 0, 2, 2, 7, 6, 7, 1, 2, 1, 4, 1, 7, 8, 0, 3, 2, 3
Offset: 0

Views

Author

Jean-François Alcover, Apr 03 2015

Keywords

Comments

As mentioned in the paper by Borwein et al., the Riemann hypothesis is equivalent to a positivity condition on every even-order derivative of the Xi function at the point s = 1/2.

Examples

			0.022971944315145437535249876497632170264593013837589...
Are also listed in the Borwein paper the Xi derivatives of order 4 and 6:
Xi^(4)(1/2) = 0.002962848433687632165368...
Xi^(6)(1/2) = 0.000599295946597579491843...
		

References

  • H. M. Edwards, Riemann's Zeta Function, Dover Publications, New York, 1974 (ISBN 978-0-486-41740-0) pp. 16-18

Crossrefs

Cf. A020777 (PolyGamma(1/4)), A059750 (zeta(1/2)), A068466 (Gamma(1/4)), A114720 (Xi(1/2)), A114875 (zeta'(1/2)), A252244 (zeta''(1/2)).

Programs

  • Mathematica
    d2 = (-(32*Pi^(1/4))^(-1))*Gamma[1/4]*((-32 + (Log[Pi] - PolyGamma[1/4])^2 + PolyGamma[1, 1/4])*Zeta[1/2] + 4*((-Log[Pi] + PolyGamma[1/4])*Zeta'[1/2] + Zeta''[1/2])); Join[{0}, First[RealDigits[d2, 10, 102]]]

Formula

Xi(s) = 1/2*s*(s-1)*Pi^(-s/2)*Gamma(s/2)*zeta(s).
Xi''(1/2) = (-(32*Pi^(1/4))^(-1))*Gamma(1/4)*((-32 + (log(Pi) - PolyGamma(1/4))^2 + PolyGamma(1, 1/4))*zeta(1/2) + 4*((-log(Pi) + PolyGamma(1/4))*zeta'(1/2) + zeta''(1/2))).

A377542 Decimal expansion of Gamma(1/4)^4/(16*Pi^2).

Original entry on oeis.org

1, 0, 9, 4, 2, 1, 9, 8, 0, 7, 6, 1, 3, 2, 3, 8, 3, 1, 9, 4, 1, 8, 3, 8, 4, 9, 7, 0, 3, 5, 2, 2, 3, 2, 2, 7, 1, 6, 2, 9, 6, 8, 6, 3, 6, 1, 4, 1, 2, 7, 8, 3, 3, 6, 1, 0, 5, 9, 6, 4, 3, 1, 0, 5, 2, 8, 9, 7, 2, 5, 9, 6, 9, 2, 2, 2, 9, 6, 6, 4, 7, 3, 8, 8, 5, 5, 1, 6, 5, 7, 4, 8, 3, 8, 7, 8, 0, 4, 3, 1
Offset: 1

Views

Author

Stefano Spezia, Oct 31 2024

Keywords

Examples

			1.09421980761323831941838497035223227162968636141...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.5.4, p. 34.

Crossrefs

Programs

  • Mathematica
    RealDigits[Gamma[1/4]^4/(16Pi^2),10,100][[1]]

Formula

Equals Product_{n>=1} (1 - 1/(2*n + 1)^2)^(-1)^n (see Finch).
Equals Product_{n>=1} (4*n - 1)^2*((4*n + 1)^2 - 1)/(((4*n - 1)^2 - 1)*(4*n + 1)^2) (see Shamos).
Equals 2*(Gamma(5/4)/Gamma(3/4))^2.
Equals A254794/2. - Hugo Pfoertner, Oct 31 2024

A382242 Decimal expansion of Gamma(1/4)^2/(8*sqrt(2*Pi)).

Original entry on oeis.org

6, 5, 5, 5, 1, 4, 3, 8, 8, 5, 7, 3, 0, 2, 9, 9, 5, 2, 6, 1, 6, 2, 0, 9, 8, 9, 7, 4, 7, 2, 7, 7, 9, 8, 5, 3, 4, 2, 0, 6, 8, 8, 7, 3, 7, 8, 5, 7, 9, 0, 5, 7, 9, 0, 7, 0, 4, 2, 0, 5, 4, 2, 5, 9, 5, 0, 1, 9, 7, 6, 4, 6, 7, 6, 7, 6, 0, 3, 5, 6, 2, 5, 5, 7, 5, 7, 3, 8, 8, 3, 2, 4, 0, 3, 5, 7, 2, 7, 3, 3, 6, 1, 5, 3, 3, 9, 3, 8, 1, 6, 7, 9, 4, 5, 8
Offset: 0

Views

Author

R. J. Mathar, Mar 19 2025

Keywords

Examples

			0.6555143885730299526162098974727798534...
		

Crossrefs

Programs

  • Maple
    Digits := 120 ; GAMMA(1/4)^2/8/sqrt(2*Pi) ; evalf(%) ;
  • Mathematica
    RealDigits[Gamma[1/4]^2/(8*Sqrt[2*Pi]), 10, 120][[1]] (* Amiram Eldar, Mar 20 2025 *)

Formula

Equals A068466^2 *A231863 /8.
Equals Product_{n>=1} (A005843(n)/A005408(n))^A034947(n).

A384563 Decimal expansion of Beta(1/4,1/4).

Original entry on oeis.org

7, 4, 1, 6, 2, 9, 8, 7, 0, 9, 2, 0, 5, 4, 8, 7, 6, 7, 3, 7, 3, 5, 4, 0, 1, 3, 8, 8, 7, 8, 1, 0, 4, 0, 1, 8, 4, 8, 7, 0, 3, 9, 5, 2, 9, 4, 0, 8, 7, 0, 6, 7, 6, 2, 2, 3, 4, 3, 7, 1, 2, 1, 8, 0, 2, 2, 4, 0, 8, 7, 1, 0, 7, 3, 5, 2, 4, 7, 9, 9, 1, 3, 4, 2, 9, 0, 8, 7, 4, 4, 6, 6, 0, 1, 4, 8, 7, 5, 8, 9
Offset: 1

Views

Author

Stefano Spezia, Jun 03 2025

Keywords

Examples

			7.416298709205487673735401388781040184870395294...
		

Crossrefs

Similar constants Beta(1/k,1/k): A000796 (k=2), A197374 (k=3).

Programs

  • Mathematica
    RealDigits[Beta[1/4,1/4],10,100][[1]]

Formula

Equals Gamma(1/4)^2/sqrt(Pi) = A068466^2/A002161.
Equals 2*A175576 = 3*A377731. - Hugo Pfoertner, Jun 03 2025
Previous Showing 41-45 of 45 results.