cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A263431 Near-repdigit primes with only digits 9 and a single 8 in decimal expansion.

Original entry on oeis.org

89, 8999, 98999, 99989, 989999, 9899999, 89999999, 99899999, 99998999, 99999989, 998999999, 98999999999, 99989999999, 999998999999, 999999999899, 999999999989, 99899999999999, 99999899999999, 99999999899999, 999999899999999, 999999999989999, 999999999999989
Offset: 1

Views

Author

Felix Fröhlich, Oct 18 2015

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Flatten[Table[FromDigits/@Permutations[PadRight[{8},n,9]],{n,15}]],PrimeQ] (* Harvey P. Dale, Mar 29 2020 *)
  • PARI
    a002283(n) = 10^n-1
    a011557(n) = 10^n
    num(n, k) = a002283(n)-a011557(k)
    terms(n) = i=0; x=1; while(x > 0, y=x-1; while(y >= 0, if(ispseudoprime(num(x, y)), print1(num(x, y), ", "); i++); if(i==n, break({2})); y--); x++)
    terms(30) \\ print initial thirty terms

A069671 Smallest n-digit triangular number with minimum digit sum.

Original entry on oeis.org

1, 10, 120, 2211, 10011, 112101, 2001000, 10006101, 200010000, 1210000221, 20000100000, 210010000005, 2000001000000, 32000004000000, 200000010000000, 3200000040000000, 20000000100000000, 320000000400000000, 2000000001000000000, 32000000004000000000
Offset: 1

Views

Author

Amarnath Murthy, Apr 06 2002

Keywords

Comments

Does the obvious pattern continue? - Vladeta Jovovic, Apr 07 2002

Crossrefs

Extensions

More terms from Vladeta Jovovic, Apr 07 2002
More terms from Sean A. Irvine, May 12 2024

A215559 Smallest n-digit noncomposite number (written in base 2) with maximum base-2 digit sum.

Original entry on oeis.org

1, 11, 111, 1011, 11111, 101111, 1111111, 10111111, 101111111, 1111011111, 11111110111, 110111111111, 1111111111111, 11101111111111, 100111111111111, 1111011111111111, 11111111111111111, 111011111111111111, 1111111111111111111, 10111111111111111111
Offset: 1

Views

Author

Gerasimov Sergey, Aug 16 2012

Keywords

Comments

In base 10: 1, 3, 7, 11, 31, 47, 127, 191, 383, 991,...

Crossrefs

Programs

  • Maple
    A215559 := proc(n)
        local ds,a,k;
        ds := 0 ;
        a := 0 ;
        for k from 2^(n-1) to 2^n-1 do
            if isprime(k) or k = 1 then
            if A000120(k) > ds then
                ds := A000120(k) ;
                a := A007088(k) ;
            end if;
            end if;
        end do:
        a ;
    end proc: # R. J. Mathar, Aug 23 2012
  • PARI
    A215559(n)={my(p=2^n-1);!for(d=0,n-2,forvec(v=vector(d,k,[2,n]),isprime(p-sum(i=1,d,2^(n-v[i])))|next;return(10^n\9-sum(i=1,d,10^(n-v[i]))),2))} \\ - M. F. Hasler, Aug 25 2012

Extensions

Corrected by R. J. Mathar, Aug 23 2012
Values double-checked by M. F. Hasler, Aug 25 2012

A069672 Largest n-digit triangular number with minimum digit sum.

Original entry on oeis.org

1, 10, 300, 3003, 20100, 112101, 2001000, 33020001, 200010000, 3200120001, 20000100000, 320001200001, 2000001000000, 32000012000001, 200000010000000, 3200000120000001, 20000000100000000, 320000001200000001, 2000000001000000000, 32000000012000000001, 200000000010000000000, 3200000000120000000001, 20000000000100000000000, 320000000001200000000001, 2000000000001000000000000, 32000000000012000000000001, 200000000000010000000000000, 3200000000000120000000000001, 20000000000000100000000000000, 320000000000001200000000000001
Offset: 1

Views

Author

Amarnath Murthy, Apr 06 2002

Keywords

Comments

Does the obvious pattern continue? - Vladeta Jovovic, Apr 07 2002

Crossrefs

Programs

  • Maple
    F:= proc(d)
    local s, P, nP, S, x, bestx;
    bestx:= 0;
    for s in [1,3,6,9] do
      for P in map(op @combinat:-permute, combinat:-partition(s)) do
        nP:= nops(P);
        for S in map(t -> [d-1, op(t)], combinat:-choose([$0..d-2],nP-1)) do
          x:= add(P[i]*10^S[i],i=1..nP);
          if x > bestx and issqr(1+8*x) then bestx:= x fi;
        od;
      od;
      if bestx > 0 then return bestx fi;
    od;
    end proc:
    seq(F(d),d=1..30); # Robert Israel, May 25 2016

Extensions

More terms from Vladeta Jovovic, Apr 07 2002
a(15)..a(30) from Robert Israel, May 25 2016
Previous Showing 11-14 of 14 results.