A103945
Number of rooted dual-unicursal n-edge maps in the plane (planar with a distinguished outside face).
Original entry on oeis.org
2, 14, 107, 844, 6757, 54522, 441863, 3589880, 29206025, 237780982, 1936486411, 15771410420, 128431734797, 1045618229234, 8510270668815, 69241255165936, 563154350637073, 4578526894227438, 37209886138826771, 302291556342169580
Offset: 1
- V. A. Liskovets and T. R. Walsh, Enumeration of unrooted maps on the plane, Rapport technique, UQAM, No. 2005-01, Montreal, Canada, 2005.
-
A069720[n_] := 2^(n-1) Binomial[2n-1, n];
A103944[n_] := If[n == 1, 1, n Binomial[2n, n] Sum[Binomial[n-2, k] (1/(n + 1 + k) + n/(n + 2 + k)), {k, 0, n-2}]];
a[n_] := (n+2) A069720[n] - A103944[n];
Array[a, 20] (* Jean-François Alcover, Aug 28 2019 *)
A114608
Triangle read by rows: T(n,k) is the number of bicolored Dyck paths of semilength n and having k peaks of the form ud (0 <= k <= n). A bicolored Dyck path is a Dyck path in which each up-step is of two kinds: u and U.
Original entry on oeis.org
1, 1, 1, 3, 4, 1, 11, 19, 9, 1, 45, 96, 66, 16, 1, 197, 501, 450, 170, 25, 1, 903, 2668, 2955, 1520, 365, 36, 1, 4279, 14407, 18963, 12355, 4165, 693, 49, 1, 20793, 78592, 119812, 94528, 41230, 9856, 1204, 64, 1, 103049, 432073, 748548, 693588, 372078, 117054
Offset: 0
T(3,2)=9 because we have (ud)(ud)Ud, (ud)Ud(ud), Ud(ud)(ud), (ud)u(ud)d,
(ud)U(ud)d, u(ud)d(ud), U(ud)d(ud), u(ud)(ud)d and U(ud)(ud)d (the ud peaks are shown between parentheses).
Triangle starts:
1;
1, 1;
3, 4, 1;
11, 19, 9, 1;
45, 96, 66, 16, 1;
-
T:=proc(n,k) if k<=n-1 then (1/n)*binomial(n,k)*sum(2^j*binomial(n,j+1)*binomial(n-k,j),j=0..n-k) elif k=n then 1 else 0 fi end: for n from 0 to 10 do seq(T(n,k),k=0..n) od; # yields sequence in triangular form
-
T[n_, k_] := If[k <= n-1, (1/n)*Binomial[n, k]*Sum[2^j*Binomial[n, j+1]* Binomial[n-k, j], {j, 0, n-k}], If[k == n, 1, 0]];
Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 11 2018, from Maple *)
A293172
Triangle read by rows: T(n,k) = number of colored weighted Motzkin paths ending at (n,k).
Original entry on oeis.org
1, 6, 1, 40, 10, 1, 280, 84, 14, 1, 2016, 672, 144, 18, 1, 14784, 5280, 1320, 220, 22, 1, 109824, 41184, 11440, 2288, 312, 26, 1, 823680, 320320, 96096, 21840, 3640, 420, 30, 1, 6223360, 2489344, 792064, 198016, 38080, 5440, 544, 34, 1, 47297536, 19348992, 6449664, 1736448, 372096, 62016, 7752
Offset: 0
Triangle begins:
1,
6,1,
40,10,1,
280,84,14,1,
2016,672,144,18,1,
14784,5280,1320,220,22,1,
...
-
A293172 := proc(n,k)
option remember;
local b,d,r,c,e;
b := 4; d:= 2; r := 2 ; c := r^2 ; e := d ;
if k < 0 or k > n then
0;
elif k = n then
1;
elif k = 0 then
(b+e)*procname(n-1,0)+c*procname(n-1,1) ;
else
procname(n-1,k-1)+b*procname(n-1,k)+c*procname(n-1,k+1) ;
end if;
end proc:
seq(seq( A293172(n,k),k=0..n),n=0..15) ; # R. J. Mathar, Oct 27 2017
-
T[n_, k_] := T[n, k] = Module[{b = 4, d = 2, r = 2, c, e}, c = r^2; e = d; If[k < 0 || k > n, 0, If[k == n, 1, If[k == 0, (b + e) T[n - 1, 0] + c T[n - 1, 1], T[n - 1, k - 1] + b T[n - 1, k] + c T[n - 1, k + 1]]]]];
Table[T[n, k], {n, 0, 15}, {k, 0, n}] // Flatten (* Jean-François Alcover, Apr 07 2020, from Maple *)
A337977
Triangle T(n,m) = C(n-1,n-m)*Sum_{k=1..n} C(2*k-2,k-1)*C(n-m,m-k)/m, m>0, n>0, n>=m.
Original entry on oeis.org
1, 1, 1, 1, 3, 2, 1, 6, 8, 5, 1, 10, 22, 26, 14, 1, 15, 50, 85, 90, 42, 1, 21, 100, 225, 348, 322, 132, 1, 28, 182, 525, 1050, 1442, 1176, 429, 1, 36, 308, 1120, 2730, 4928, 5992, 4356, 1430, 1, 45, 492, 2226, 6426, 14238, 22920, 24894, 16302, 4862
Offset: 1
1,
1, 1,
1, 3, 2,
1, 6, 8, 5,
1,10, 22, 26, 14,
1,15, 50, 85, 90, 42,
1,21,100,225,348,322,132
-
Table[Binomial[n - 1, n - m] Sum[Binomial[2 k - 2, k - 1] Binomial[n - m, m - k]/m, {k, n}], {n, 10}, {m, n}] // Flatten (* Michael De Vlieger, Oct 05 2020 *)
-
T(n,m):=(binomial(n-1,n-m)*sum(binomial(2*k-2,k-1)*binomial(n-m,m-k),k,1,n))/m;
A360651
Triangle T(n, m) = (n - m + 1)*C(2*n + 1, m)*C(2*n - m + 2, n - m + 1)/(2*n - m + 2).
Original entry on oeis.org
1, 3, 3, 10, 20, 10, 35, 105, 105, 35, 126, 504, 756, 504, 126, 462, 2310, 4620, 4620, 2310, 462, 1716, 10296, 25740, 34320, 25740, 10296, 1716, 6435, 45045, 135135, 225225, 225225, 135135, 45045, 6435, 24310, 194480, 680680, 1361360, 1701700, 1361360, 680680, 194480, 24310
Offset: 0
Triangle T(n, m) starts:
[0] 1;
[1] 3, 3;
[2] 10, 20, 10;
[3] 35, 105, 105, 35;
[4] 126, 504, 756, 504, 126;
[5] 462, 2310, 4620, 4620, 2310, 462;
[6] 1716, 10296, 25740, 34320, 25740, 10296, 1716;
[7] 6435, 45045, 135135, 225225, 225225, 135135, 45045, 6435;
-
CatalanNumber := n -> binomial(2*n, n)/(n + 1):
T := (n, k) -> (2*n + 1)*CatalanNumber(n)*binomial(n, k):
seq(seq(T(n, k), k = 0..n), n = 0..8); # Peter Luschny, Feb 15 2023
-
T(n,m):=if n
Comments