cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-25 of 25 results.

A103945 Number of rooted dual-unicursal n-edge maps in the plane (planar with a distinguished outside face).

Original entry on oeis.org

2, 14, 107, 844, 6757, 54522, 441863, 3589880, 29206025, 237780982, 1936486411, 15771410420, 128431734797, 1045618229234, 8510270668815, 69241255165936, 563154350637073, 4578526894227438, 37209886138826771, 302291556342169580
Offset: 1

Views

Author

Valery A. Liskovets, Mar 17 2005

Keywords

References

  • V. A. Liskovets and T. R. Walsh, Enumeration of unrooted maps on the plane, Rapport technique, UQAM, No. 2005-01, Montreal, Canada, 2005.

Crossrefs

Programs

  • Mathematica
    A069720[n_] := 2^(n-1) Binomial[2n-1, n];
    A103944[n_] := If[n == 1, 1, n Binomial[2n, n] Sum[Binomial[n-2, k] (1/(n + 1 + k) + n/(n + 2 + k)), {k, 0, n-2}]];
    a[n_] := (n+2) A069720[n] - A103944[n];
    Array[a, 20] (* Jean-François Alcover, Aug 28 2019 *)

Formula

a(n)=(n+2)*A069720(n)-A103944(n).

A114608 Triangle read by rows: T(n,k) is the number of bicolored Dyck paths of semilength n and having k peaks of the form ud (0 <= k <= n). A bicolored Dyck path is a Dyck path in which each up-step is of two kinds: u and U.

Original entry on oeis.org

1, 1, 1, 3, 4, 1, 11, 19, 9, 1, 45, 96, 66, 16, 1, 197, 501, 450, 170, 25, 1, 903, 2668, 2955, 1520, 365, 36, 1, 4279, 14407, 18963, 12355, 4165, 693, 49, 1, 20793, 78592, 119812, 94528, 41230, 9856, 1204, 64, 1, 103049, 432073, 748548, 693588, 372078, 117054
Offset: 0

Views

Author

Emeric Deutsch, Dec 15 2005

Keywords

Comments

Row sums yield A052701. Column 0 yields the little Schroeder numbers (A001003). Sum_{k=0..n} k*T(n,k) = A069720(n).
Triangle T(n,k), 0 <= k <= n, read by rows; given by [1, 2, 1, 2, 1, 2, 1, 2, 1, 2, ...] DELTA [1, 0, 1, 0, 1, 0, 1, 0, 1, 0, ...] where DELTA is the operator defined in A084938. - Philippe Deléham, Dec 23 2005

Examples

			T(3,2)=9 because we have (ud)(ud)Ud, (ud)Ud(ud), Ud(ud)(ud), (ud)u(ud)d,
(ud)U(ud)d, u(ud)d(ud), U(ud)d(ud), u(ud)(ud)d and U(ud)(ud)d (the ud peaks are shown between parentheses).
Triangle starts:
   1;
   1,  1;
   3,  4,  1;
  11, 19,  9,  1;
  45, 96, 66, 16,  1;
		

Crossrefs

Programs

  • Maple
    T:=proc(n,k) if k<=n-1 then (1/n)*binomial(n,k)*sum(2^j*binomial(n,j+1)*binomial(n-k,j),j=0..n-k) elif k=n then 1 else 0 fi end: for n from 0 to 10 do seq(T(n,k),k=0..n) od; # yields sequence in triangular form
  • Mathematica
    T[n_, k_] := If[k <= n-1, (1/n)*Binomial[n, k]*Sum[2^j*Binomial[n, j+1]* Binomial[n-k, j], {j, 0, n-k}], If[k == n, 1, 0]];
    Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 11 2018, from Maple *)

Formula

T(n,k) = (1/n)*binomial(n,k)*Sum_{j=0..n-k} 2^j*binomial(n, j+1)*binomial(n-k, j) (k <= n-1); T(n, n)=1.
G.f. = G = G(t, z) satisfies G = 1 + z*(G-1+t)*G + z*G^2.

A293172 Triangle read by rows: T(n,k) = number of colored weighted Motzkin paths ending at (n,k).

Original entry on oeis.org

1, 6, 1, 40, 10, 1, 280, 84, 14, 1, 2016, 672, 144, 18, 1, 14784, 5280, 1320, 220, 22, 1, 109824, 41184, 11440, 2288, 312, 26, 1, 823680, 320320, 96096, 21840, 3640, 420, 30, 1, 6223360, 2489344, 792064, 198016, 38080, 5440, 544, 34, 1, 47297536, 19348992, 6449664, 1736448, 372096, 62016, 7752
Offset: 0

Views

Author

N. J. A. Sloane, Oct 19 2017

Keywords

Examples

			Triangle begins:
1,
6,1,
40,10,1,
280,84,14,1,
2016,672,144,18,1,
14784,5280,1320,220,22,1,
...
		

Crossrefs

First column is A069720.

Programs

  • Maple
    A293172 := proc(n,k)
        option remember;
        local b,d,r,c,e;
        b := 4; d:= 2; r := 2 ; c := r^2 ; e := d ;
        if k < 0 or k > n then
            0;
        elif k = n then
            1;
        elif k = 0 then
            (b+e)*procname(n-1,0)+c*procname(n-1,1) ;
        else
            procname(n-1,k-1)+b*procname(n-1,k)+c*procname(n-1,k+1) ;
        end if;
    end proc:
    seq(seq( A293172(n,k),k=0..n),n=0..15) ; # R. J. Mathar, Oct 27 2017
  • Mathematica
    T[n_, k_] := T[n, k] = Module[{b = 4, d = 2, r = 2, c, e}, c = r^2; e = d; If[k < 0 || k > n, 0, If[k == n, 1, If[k == 0, (b + e) T[n - 1, 0] + c T[n - 1, 1], T[n - 1, k - 1] + b T[n - 1, k] + c T[n - 1, k + 1]]]]];
    Table[T[n, k], {n, 0, 15}, {k, 0, n}] // Flatten (* Jean-François Alcover, Apr 07 2020, from Maple *)

A337977 Triangle T(n,m) = C(n-1,n-m)*Sum_{k=1..n} C(2*k-2,k-1)*C(n-m,m-k)/m, m>0, n>0, n>=m.

Original entry on oeis.org

1, 1, 1, 1, 3, 2, 1, 6, 8, 5, 1, 10, 22, 26, 14, 1, 15, 50, 85, 90, 42, 1, 21, 100, 225, 348, 322, 132, 1, 28, 182, 525, 1050, 1442, 1176, 429, 1, 36, 308, 1120, 2730, 4928, 5992, 4356, 1430, 1, 45, 492, 2226, 6426, 14238, 22920, 24894, 16302, 4862
Offset: 1

Views

Author

Vladimir Kruchinin, Oct 05 2020

Keywords

Examples

			1,
1, 1,
1, 3,  2,
1, 6,  8,  5,
1,10, 22, 26, 14,
1,15, 50, 85, 90, 42,
1,21,100,225,348,322,132
		

Crossrefs

T(2*n,n) is A069720.
2nd column: A000217, 3rd column: 2*A006522 or 2*(A027927-1).

Programs

  • Mathematica
    Table[Binomial[n - 1, n - m] Sum[Binomial[2 k - 2, k - 1] Binomial[n - m, m - k]/m, {k, n}], {n, 10}, {m, n}] // Flatten (* Michael De Vlieger, Oct 05 2020 *)
  • Maxima
    T(n,m):=(binomial(n-1,n-m)*sum(binomial(2*k-2,k-1)*binomial(n-m,m-k),k,1,n))/m;

Formula

G.f.: A(x,y) = -(sqrt((2*sqrt(-4*x^2*y+x^2-2*x+1)+3*x-2)/(4*x))-1/2).

A360651 Triangle T(n, m) = (n - m + 1)*C(2*n + 1, m)*C(2*n - m + 2, n - m + 1)/(2*n - m + 2).

Original entry on oeis.org

1, 3, 3, 10, 20, 10, 35, 105, 105, 35, 126, 504, 756, 504, 126, 462, 2310, 4620, 4620, 2310, 462, 1716, 10296, 25740, 34320, 25740, 10296, 1716, 6435, 45045, 135135, 225225, 225225, 135135, 45045, 6435, 24310, 194480, 680680, 1361360, 1701700, 1361360, 680680, 194480, 24310
Offset: 0

Views

Author

Vladimir Kruchinin, Feb 15 2023

Keywords

Examples

			Triangle T(n, m) starts:
[0] 1;
[1] 3,     3;
[2] 10,    20,    10;
[3] 35,    105,   105,     35;
[4] 126,   504,   756,     504,     126;
[5] 462,   2310,  4620,    4620,    2310,    462;
[6] 1716,  10296, 25740,   34320,   25740,   10296,    1716;
[7] 6435,  45045, 135135,  225225,  225225,  135135,   45045,  6435;
		

Crossrefs

Cf. A001700, A085880, A069720 (row sums).

Programs

  • Maple
    CatalanNumber := n -> binomial(2*n, n)/(n + 1):
    T := (n, k) -> (2*n + 1)*CatalanNumber(n)*binomial(n, k):
    seq(seq(T(n, k), k = 0..n), n = 0..8); # Peter Luschny, Feb 15 2023
  • Maxima
    T(n,m):=if n
    				

Formula

G.f.: 2/(1 - 4*x + sqrt(1 - 4*x - 4*x*y) - 4*x*y).
T(n, k) = binomial(n, k)*CatalanNumber(n)*(2*n + 1). - Peter Luschny, Feb 15 2023
Previous Showing 21-25 of 25 results.