cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 73 results. Next

A070144 Numbers n such that [A070080(n), A070081(n), A070082(n)] is a scalene integer triangle with integer area.

Original entry on oeis.org

17, 116, 212, 252, 368, 370, 493, 561, 587, 659, 839, 850, 1156, 1186, 1196, 1297, 1582, 1599, 1629, 1912, 1920, 2115, 2352, 2555, 2574, 2713, 2774, 2778, 3251, 3473, 3728, 3746, 3751, 4286, 4298, 4307, 4313, 4319
Offset: 1

Views

Author

Reinhard Zumkeller, May 05 2002

Keywords

Examples

			a(2)=116: [A070080(116), A070081(116), A070082(116)] = [6<8<10], area^2 = s*(s-6)*(s-8)*(s-10) with s=A070083(116)/2=(6+8+10)/2=12, area^2=12*6*4*2=64*9 is an integer square, therefore A070086(116)=area=8*3=24.
		

Crossrefs

A070146 Numbers n such that [A070080(n), A070081(n), A070082(n)] is an acute integer triangle with integer area.

Original entry on oeis.org

39, 269, 375, 587, 862, 972, 1196, 1955, 1988, 2352, 2555, 2796, 3818, 4319, 4406, 5378, 6522, 6808, 6880, 6890, 6921, 7234, 7360, 8193, 9159, 9207, 10272, 14545, 15004, 15061, 15101, 15216, 15237, 15943, 16502
Offset: 1

Views

Author

Reinhard Zumkeller, May 05 2002

Keywords

Examples

			a(1)=39: [A070080(39), A070081(39), A070082(39)] = [5,5,6]: A070085(39)=5^2+5^2-6^2=14>0 and area^2 = s*(s-5)*(s-5)*(s-6) with s=A070083(39)/2=(5+5+6)/2=8, area^2=8*3*3*2=16*9 is an integer square, therefore A070086(39)=area=4*3=12.
		

Crossrefs

A070147 Numbers k such that [A070080(k), A070081(k), A070082(k)] is an obtuse integer triangle with integer area.

Original entry on oeis.org

52, 252, 368, 372, 561, 659, 839, 957, 1156, 1186, 1204, 1582, 1912, 1920, 1971, 2115, 2713, 2774, 2790, 3251, 3473, 3728, 3746, 4286, 4307, 4313, 4330, 5008, 5272, 5374, 6369, 6389, 6432, 6776, 6881, 7223, 7310, 7341
Offset: 1

Views

Author

Reinhard Zumkeller, May 05 2002

Keywords

Examples

			a(1)=52: [A070080(52), A070081(52), A070082(52)] = [5,5,8]: A070085(52)=5^2+5^2-8^2=-14<0 and area^2 = s*(s-5)*(s-5)*(s-6) with s=A070083(52)/2=(5+5+8)/2=9, area^2=9*4*4*1=16*9 is an integer square, therefore A070086(52)=area=4*3=12.
		

Crossrefs

A070148 Numbers k such that [A070080(k), A070081(k), A070082(k)] is an integer Heronian triangle having triangular area.

Original entry on oeis.org

17, 368, 659, 972, 1156, 1599, 1971, 2555, 2574, 3746, 3818, 4298, 4330, 5374, 14325, 14414, 15004, 15943, 16451, 19475, 19615, 24013, 24051, 33950, 63593, 71630, 75052, 79286, 79670, 79921, 84183, 90187, 93290
Offset: 1

Views

Author

Reinhard Zumkeller, May 05 2002

Keywords

Examples

			17 is a term: [A070080(17), A070081(17), A070082(17)] = [3,4,5]: A070086(52)=6.
		

Crossrefs

Programs

  • Mathematica
    m = 500 (* max perimeter *);
    sides[per_] := Select[Reverse /@ IntegerPartitions[per, {3}, Range[ Ceiling[per/2]]], #[[1]] < per/2 && #[[2]] < per/2 && #[[3]] < per/2 &];
    triangles = DeleteCases[Table[sides[per], {per, 3, m}], {}] // Flatten[#, 1] & // SortBy[Total[#] m^3 + #[[1]] m^2 + #[[2]] m + #[[1]] &];
    area[{a_, b_, c_}] := With[{p = (a + b + c)/2}, Sqrt[p(p-a)(p-b)(p-c)]];
    Position[triangles, {a_, b_, c_} /; IntegerQ[area[{a, b, c}]] && IntegerQ[Sqrt[1 + 8 area[{a, b, c}]]]] // Flatten (* Jean-François Alcover, Oct 04 2021 *)

A070210 Inradii of integer triangles [A070080(A070209(n)), A070081(A070209(n)), A070082(A070209(n))].

Original entry on oeis.org

1, 2, 2, 3, 2, 3, 3, 2, 4, 3, 4, 4, 3, 2, 4, 5, 3, 6, 4, 6, 6, 6, 4, 6, 3, 4, 3, 6, 4, 5, 4, 3, 6, 5, 7, 8, 6, 4, 6, 8, 7, 8, 9, 3, 9, 5, 6, 9, 8, 10, 6, 6, 6, 9, 8, 4, 8, 9, 7, 10, 6, 10, 12, 6, 12, 12, 5, 3, 7, 8, 10, 4, 9, 10, 11, 6, 12, 3, 6, 9, 12, 12, 7, 8
Offset: 1

Views

Author

Reinhard Zumkeller, May 05 2002

Keywords

Comments

a(n) = A070200(A070209(n)).

Examples

			A070209(3)=212: [A070080(212), A070081(212), A070082(212)] = [5,12,13], let s = A070083(212)/2 = (5+12+13)/2 = 15 then inradius = sqrt((s-5)*(s-5)*(s-6)/s) = sqrt(10*3*2/15) = sqrt(4) = 2; a(3) = A070200(212) = 2.
		

Crossrefs

A316841 Three-column table read by rows giving integer sides of proper triangles (i,j,k) with i >= j >= k >= 1, j+k > i.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 2, 2, 2, 3, 2, 2, 3, 3, 1, 3, 3, 2, 3, 3, 3, 4, 3, 2, 4, 3, 3, 4, 4, 1, 4, 4, 2, 4, 4, 3, 4, 4, 4, 5, 3, 3, 5, 4, 2, 5, 4, 3, 5, 4, 4, 5, 5, 1, 5, 5, 2, 5, 5, 3, 5, 5, 4, 5, 5, 5, 6, 4, 3, 6, 4, 4, 6, 5, 2, 6, 5, 3, 6, 5, 4, 6, 5, 5, 6, 6, 1, 6, 6, 2, 6, 6, 3, 6, 6, 4, 6, 6, 5, 6, 6, 6, 7, 4, 4, 7, 5, 3, 7, 5, 4, 7, 5, 5, 7, 6, 2, 7, 6, 3, 7, 6, 4, 7, 6, 5
Offset: 1

Views

Author

N. J. A. Sloane, Jul 23 2018, following a suggestion from Donald S. McDonald

Keywords

Examples

			Table begins (imprimitive triples are labeled i):
[1,1,1],
[2,2,1],
[2,2,2],i
[3,2,2],
[3,3,1],
[3,3,2],
[3,3,3],i
[4,3,2],
[4,3,3],
[4,4,1],
[4,4,2],i
[4,4,3],
[4,4,4],i
[5,3,3],
...
		

Crossrefs

There are A002620(k+1) rows that begin with k.
The three columns are A316843, A316844, A316845.
A316849 is a compressed version.
See A316842 for primitive triples.
See A316851 and A316853 & A317182 for perimeter and area.
Other related sequences: A051493, A070080, A070081, A070082, A070110.

Programs

  • PARI
    for(i=1,6, for(j=1,i, for(k=1,j, if(j+k>i, print1(i,", ",j,", ",k,", "))))) \\ Hugo Pfoertner, Jan 25 2020

A070093 Number of acute integer triangles with perimeter n.

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 2, 4, 3, 5, 4, 5, 5, 5, 6, 6, 6, 7, 7, 9, 8, 10, 9, 10, 10, 11, 12, 12, 12, 14, 13, 16, 14, 17, 16, 17, 18, 18, 20, 20, 20, 22, 22, 24, 23, 25, 26, 26, 27, 28, 30, 30, 29, 32, 31, 35, 33, 36, 36, 38, 39, 40, 40
Offset: 1

Views

Author

Reinhard Zumkeller, May 05 2002

Keywords

Comments

An integer triangle [A070080(k) <= A070081(k) <= A070082(k)] is acute iff A070085(k) > 0.

Examples

			For n=9 there are A005044(9)=3 integer triangles: [1,4,4], [2,3,4] and [3,3,3]; two of them are acute, as 2^2+3^2<16=4^2, therefore a(9)=2.
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Sum[(1 - Sign[Floor[(n - i - k)^2/(i^2 + k^2)]]) Sign[Floor[(i + k)/(n - i - k + 1)]], {i, k, Floor[(n - k)/2]}], {k, Floor[n/3]}], {n, 100}] (* Wesley Ivan Hurt, May 12 2019 *)

Formula

a(n) = A005044(n) - A070101(n) - A024155(n);
a(n) = A042154(n) + A070098(n).
a(n) = Sum_{k=1..floor(n/3)} Sum_{i=k..floor((n-k)/2)} (1-sign(floor((n-i-k)^2/(i^2+k^2)))) * sign(floor((i+k)/(n-i-k+1))). - Wesley Ivan Hurt, May 12 2019

A070083 Perimeters of integer triangles, sorted by perimeter, sides lexicographically ordered.

Original entry on oeis.org

3, 5, 6, 7, 7, 8, 9, 9, 9, 10, 10, 11, 11, 11, 11, 12, 12, 12, 13, 13, 13, 13, 13, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 15, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17, 17, 17, 17, 18, 18, 18, 18, 18, 18, 18, 19, 19, 19, 19, 19, 19, 19, 19, 19
Offset: 1

Views

Author

Reinhard Zumkeller, May 05 2002

Keywords

Comments

A005044(p) is the number of all integer triangles having perimeter p.

Programs

  • Mathematica
    maxPer = 19; maxSide = Floor[(maxPer-1)/2]; order[{a_, b_, c_}] := (a+b+c)*maxPer^3 + a*maxPer^2 + b*maxPer + c; triangles = Reap[Do[If[ a+b+c <= maxPer && c-b < a < c+b && b-a < c < b+a && c-a < b < c+a, Sow[{a, b, c}]], {a, 1, maxSide}, {b, a, maxSide}, {c, b, maxSide}]][[2, 1]]; Total /@ Sort[triangles, order[#1] < order[#2] &] (* Jean-François Alcover, Jun 12 2012 *)
    maxPer = m = 22; sides[per_] := Select[Reverse /@ IntegerPartitions[per, {3}, Range[Ceiling[per/2]]], #[[1]] < per/2 && #[[2]] < per/2 && #[[3]] < per/2&]; triangles = DeleteCases[Table[ sides[per], {per, 3, m}], {}] // Flatten[#, 1]& // SortBy[Total[#] m^3 + #[[1]] m^2 + #[[2]] m + #[[1]]&]; Total /@ triangles (* Jean-François Alcover, Jul 09 2017 *)

Formula

a(n) = A070080(n) + A070081(n) + A070082(n).

A070088 Number of integer-sided triangles with perimeter n and prime sides.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 2, 1, 2, 0, 1, 0, 1, 0, 1, 1, 2, 0, 3, 1, 3, 0, 2, 0, 2, 0, 3, 1, 3, 0, 5, 1, 5, 0, 4, 0, 3, 0, 5, 1, 5, 0, 4, 0, 4, 0, 2, 0, 3, 0, 5, 1, 3, 0, 6, 1, 8, 0, 5, 0, 5, 0, 4, 0, 3, 0, 5, 1, 6, 0, 6, 0, 4, 0, 7, 1, 7, 0, 9, 1, 10, 0
Offset: 1

Views

Author

Reinhard Zumkeller, May 05 2002

Keywords

Examples

			For n=15 there are A005044(15)=7 integer triangles: [1,7,7], [2,6,7], [3,5,7], [3,6,6], [4,4,7], [4,5,6] and [5,5,5]: two of them consist of primes, therefore a(15)=2.
		

Crossrefs

Programs

  • Mathematica
    triangleQ[sides_] := With[{s = Total[sides]/2}, AllTrue[sides, # < s&]];
    a[n_] := Select[IntegerPartitions[n, {3}, Select[Range[Ceiling[n/2]], PrimeQ]], triangleQ] // Length; Array[a, 90] (* Jean-François Alcover, Jul 09 2017 *)
    Table[Sum[Sum[(PrimePi[i] - PrimePi[i - 1]) (PrimePi[k] - PrimePi[k - 1]) (PrimePi[n - i - k] - PrimePi[n - i - k - 1]) Sign[Floor[(i + k)/(n - i - k + 1)]], {i, k, Floor[(n - k)/2]}], {k, Floor[n/3]}], {n, 100}] (* Wesley Ivan Hurt, May 13 2019 *)

Formula

a(n) = A070090(n) + A070092(n) = A070095(n) + A070103(n).
a(n) = Sum_{k=1..floor(n/3)} Sum_{i=k..floor((n-k)/2)} sign(floor((i+k)/(n-i-k+1))) * c(i) * c(k) * c(n-i-k), where c = A010051. - Wesley Ivan Hurt, May 13 2019

A070101 Number of obtuse integer triangles with perimeter n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 2, 0, 2, 2, 3, 2, 3, 3, 5, 3, 7, 4, 8, 5, 9, 7, 10, 8, 11, 9, 14, 11, 16, 12, 18, 14, 19, 17, 21, 18, 23, 21, 27, 22, 30, 24, 32, 27, 34, 30, 37, 33, 40, 35, 44, 37, 47, 40, 50, 44, 53, 49, 56, 52, 60, 55, 64, 57, 68
Offset: 1

Views

Author

Reinhard Zumkeller, May 05 2002

Keywords

Comments

An integer triangle [A070080(k) <= A070081(k) <= A070082(k)] is obtuse iff A070085(k) < 0.

Examples

			For n=14 there are A005044(14)=4 integer triangles: [2,6,6], [3,5,6], [4,4,6] and [4,5,5]; two of them are obtuse, as 3^2+5^2<36=6^2 and 4^2+4^2<36=6^2, therefore a(14)=2.
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Sum[(1 - Sign[Floor[(i^2 + k^2)/(n - i - k)^2]]) Sign[Floor[(i + k)/(n - i - k + 1)]], {i, k, Floor[(n - k)/2]}], {k, Floor[n/3]}], {n, 100}] (* Wesley Ivan Hurt, May 12 2019 *)

Formula

a(n) = A005044(n) - A070093(n) - A024155(n).
a(n) = A024156(n) + A070106(n).
a(n) = Sum_{k=1..floor(n/3)} Sum_{i=k..floor((n-k)/2)}
(1-sign(floor((i^2 + k^2)/(n-i-k)^2))) * sign(floor((i+k)/(n-i-k+1))). - Wesley Ivan Hurt, May 12 2019
Previous Showing 41-50 of 73 results. Next