cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A185002 Numbers k such that P(k^2+1) > P((k+1)^2+1) where P(n) (A006530) is the largest prime factor of n.

Original entry on oeis.org

4, 6, 10, 11, 12, 14, 16, 17, 20, 22, 24, 26, 29, 30, 33, 36, 37, 40, 42, 45, 46, 49, 51, 52, 54, 56, 59, 61, 62, 63, 66, 67, 69, 71, 72, 74, 79, 82, 84, 85, 88, 90, 92, 94, 95, 97, 98, 101, 102, 103, 104, 106, 108, 110, 113, 116, 118, 120, 121, 122, 124, 126
Offset: 1

Views

Author

Michel Lagneau, Jan 23 2012

Keywords

Examples

			11 is in the sequence because 11^2+1 = 2*61 and 12^2+1 = 5*29 => 61 > 29.
		

Crossrefs

Programs

  • Mathematica
    f[n_]:=FactorInteger[n^2+1][[-1,1]];Select[Range[125],f[#]>f[#+1]&]
  • PARI
    r=2;for(k=1,1e3,t=factor((k+1)^2+1)[,1];t=t[#t];if(tCharles R Greathouse IV, Jan 23 2012

A185011 Numbers k such that P(k^2+1) < P((k+1)^2+1) where P(n) (A006530) is the largest prime factor of n.

Original entry on oeis.org

1, 3, 5, 7, 8, 9, 13, 15, 18, 19, 21, 23, 25, 27, 28, 31, 32, 34, 35, 38, 39, 41, 43, 44, 47, 48, 50, 53, 55, 57, 58, 60, 64, 65, 68, 70, 73, 75, 76, 77, 78, 80, 81, 83, 86, 87, 89, 91, 93, 96, 99, 100, 105, 107, 109, 111, 112, 114, 115, 117, 119, 123, 125
Offset: 1

Views

Author

Michel Lagneau, Jan 23 2012

Keywords

Examples

			8 is in the sequence because 8^2+1 = 5*13 and 9^2+1 = 2*41 => 13 < 41.
		

Crossrefs

Programs

  • Mathematica
    f[n_]:=FactorInteger[n^2+1][[-1,1]];Select[Range[125],f[#]
    				

A216650 Maximum length of each subsequence whose elements are the greatest prime divisors of the integers 2, 3, 4, ... in increasing order.

Original entry on oeis.org

2, 2, 2, 4, 2, 1, 1, 2, 2, 4, 3, 3, 2, 3, 1, 2, 1, 1, 2, 2, 1, 3, 2, 2, 2, 2, 4, 2, 1, 1, 2, 2, 2, 2, 2, 1, 2, 3, 1, 3, 3, 1, 2, 5, 1, 2, 2, 2, 2, 1, 3, 2, 2, 2, 3, 2, 1, 3, 1, 1, 3, 2, 2, 3, 3, 2, 3, 1, 3, 3, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 3, 6, 1, 5, 2, 2, 2
Offset: 1

Views

Author

Michel Lagneau, Sep 12 2012

Keywords

Comments

Let gpf(m) = A006530(m) be the greatest prime factor of m and the subset E(n) = {m, m+1, ..., m+L-1} such that gpf(m) < gpf(m+1) < ... < gpf(m+L-1) where L is the maximum length of E(n) and n the index such that {E(1) union E(2) union ... } = {2, 3, 4, ...}.
See the examples for the structure of the subsequences of increasing prime divisors.
The growth of a(n) is very slow. See the following smallest values of m such that a(m) = n:
a(6) = 1, a(1) = 2, a(11) = 3, a(4) = 4, a(44) = 5, a(82) = 6, a(4672) = 7, a(23001) = 8, a(360896) = 9.

Examples

			Subset 1: {2, 3} obtained with the numbers 2, 3 => a(1) = 2;
Subset 2: {2, 5} obtained with the numbers 4, 5 => a(2) = 2;
Subset 3: {3, 7} obtained with the numbers 6, 7 => a(3) = 2;
Subset 4: {2, 3, 5, 11} obtained with the numbers 8, 9, 10, 11 => a(4) = 4.
		

Crossrefs

Programs

  • Maple
    with(numtheory):p0:=2:it:=1:for n from 3 to 200 do: x:=factorset(n):n1:=nops(x):p:=x[n1]:if p>p0 then it:=it+1:p0:=p:else printf(`%d, `,it):it:=1:p0:=p:fi:od:

Formula

a(n) = A070087(n)-A070087(n-1) for n >= 2. - Pontus von Brömssen, Nov 09 2022

A100387 a(n) is the largest number x such that for m=n to n+x-1, A006530(m) decreases.

Original entry on oeis.org

1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 4, 3, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 2, 1, 1, 3, 2, 1, 4, 3, 2, 1, 2, 1, 3, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 4, 3, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 3, 2, 1, 2, 1, 1, 3, 2, 1, 1, 2, 1, 1, 3, 2, 1, 2, 1, 1, 1, 1, 3, 2, 1, 2, 1, 2, 1, 2, 1, 3, 2, 1
Offset: 2

Views

Author

Labos Elemer, Dec 10 2004

Keywords

Comments

A006530(m) is the largest prime factor of m.

Examples

			a(13)=4 because the largest prime factors of 13,14,15,16 are 13,7,5,2; but A006530(17)=17.
		

Crossrefs

Programs

  • Mathematica
    <
    				

Formula

From Pontus von Brömssen, Nov 09 2022: (Start)
a(n) = 1 if and only if n >= 2 and n is a term of A070089.
If a(n) > 1 then a(n) = a(n+1)+1.
(End)

Extensions

Edited by Don Reble, Jun 13 2007
Previous Showing 11-14 of 14 results.