A276762 Decimal expansion of the real part of a fixed point of the logarithmic integral li(z) in C.
1, 8, 7, 8, 8, 8, 1, 7, 4, 7, 9, 0, 8, 1, 2, 3, 0, 9, 1, 9, 6, 9, 4, 8, 6, 4, 9, 7, 3, 2, 6, 8, 8, 3, 4, 6, 9, 6, 8, 9, 5, 9, 4, 9, 5, 2, 8, 5, 5, 6, 3, 6, 6, 0, 6, 8, 9, 4, 5, 2, 7, 5, 1, 5, 0, 8, 5, 2, 1, 2, 5, 5, 4, 2, 6, 4, 7, 2, 6, 6, 9, 8, 8, 5, 0, 4, 8, 4, 5, 1, 2, 7, 0, 8, 9, 4, 4, 8, 5, 3, 5, 0, 8, 0, 6
Offset: 1
Examples
1.878881747908123091969486497326883469689594952855636606894527515...
Links
- Stanislav Sykora, Table of n, a(n) for n = 1..2000
- Eric Weisstein's World of Mathematics, Logarithmic Integral.
- Wikipedia, Logarithmic integral function.
Programs
-
Mathematica
RealDigits[Re[z/.FindRoot[LogIntegral[z] == z, {z, 2+I}, WorkingPrecision -> 100]]][[1]] (* Vaclav Kotesovec, Oct 30 2016 *)
-
PARI
\\ z may be t_INT, t_REAL, or t_COMPLEX except 0 or 1 li(z)= { my(sgn=(-1)^if(real(z)<1,imag(z)<0,imag(z)<=0)); sgn*Pi*I - eint1(-log(z)); } default(realprecision,2100); \\ Execution: Eps_= 4.0*10.0^(-default(realprecision)); z=1+I;zlast=0; \\ Initialize and iterate for(k=1,1e6,z=li(z);if(abs(z-zlast)
Comments