cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 45 results. Next

A266945 Expansion of Product_{k>=1} 1 / (1 - 2*x^k)^3.

Original entry on oeis.org

1, 6, 30, 122, 450, 1518, 4830, 14586, 42330, 118622, 322974, 857298, 2226586, 5672046, 14205654, 35040722, 85269114, 204971478, 487307542, 1146995154, 2675265522, 6188176838, 14205568950, 32383725450, 73352114450, 165171276822, 369904716750, 824244212554
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 06 2016

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[1/(1-2*x^k)^3, {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ c * n^2 * 2^n, where c = 1/(2*A048651^3) = 1/(2*QPochhammer(1/2)^3) = 20.760229307499152409838537... .

A278464 Total number of parts of the second sort in all partitions of n into two sorts of parts.

Original entry on oeis.org

0, 1, 5, 17, 53, 145, 385, 957, 2333, 5493, 12741, 28941, 65049, 144225, 317229, 691457, 1497901, 3224145, 6906969, 14726701, 31282421, 66211253, 139720445, 294007373, 617154865, 1292516577, 2701451621, 5635565761, 11736442005, 24403092657, 50666528209
Offset: 0

Views

Author

Alois P. Heinz, Nov 22 2016

Keywords

Comments

a(n) is odd for n > 0.

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, [1/2, 0], `if`(i<1, 0,
          b(n, i-1) +`if`(i>n, 0, (p-> p+[0, p[1]])(2*b(n-i, i)))))
        end:
    a:= n-> b(n$2)[2]:
    seq(a(n), n=0..35);
  • Mathematica
    b[n_, i_] := b[n, i] = Expand[If[n == 0, 1, If[i < 1, 0, Sum[b[n - i*j, i - 1]*Sum[x^t*Binomial[j, t], {t, 0, j}], {j, 0, n/i}]]]];
    a[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, n}]][b[n, n]] . Range[0, n];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Nov 10 2017, after Alois P. Heinz *)

Formula

a(n) = Sum_{k=0..n} k * A256193(n,k).

A349921 Dirichlet g.f.: Product_{k>=2} 1 / (1 - 2 * k^(-s)).

Original entry on oeis.org

1, 2, 2, 6, 2, 6, 2, 14, 6, 6, 2, 18, 2, 6, 6, 34, 2, 18, 2, 18, 6, 6, 2, 46, 6, 6, 14, 18, 2, 22, 2, 74, 6, 6, 6, 58, 2, 6, 6, 46, 2, 22, 2, 18, 18, 6, 2, 114, 6, 18, 6, 18, 2, 46, 6, 46, 6, 6, 2, 70, 2, 6, 18, 166, 6, 22, 2, 18, 6, 22, 2, 150, 2, 6, 18
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 05 2021

Keywords

Crossrefs

A355387 Number of ways to choose a distinct subsequence of an integer composition of n.

Original entry on oeis.org

1, 2, 5, 14, 37, 98, 259, 682, 1791, 4697, 12303, 32196, 84199, 220087, 575067, 1502176, 3923117, 10244069, 26746171, 69825070, 182276806, 475804961, 1241965456, 3241732629, 8461261457, 22084402087, 57640875725, 150442742575, 392652788250, 1024810764496
Offset: 0

Views

Author

Gus Wiseman, Jul 04 2022

Keywords

Comments

By "distinct" we mean equal subsequences are counted only once. For example, the pair (1,1)(1) is counted only once even though (1) is a subsequence of (1,1) in two ways. The version with multiplicity is A025192.

Examples

			The a(3) = 14 pairings of a composition with a chosen subsequence:
  (3)()     (3)(3)
  (21)()    (21)(1)   (21)(2)    (21)(21)
  (12)()    (12)(1)   (12)(2)    (12)(12)
  (111)()   (111)(1)  (111)(11)  (111)(111)
		

Crossrefs

For partitions we have A000712, composable A339006.
The homogeneous version is A011782, without containment A000302.
With multiplicity we have A025192, for partitions A070933.
The strict case is A032005.
The case of strict subsequences is A236002.
The composable case is A355384, homogeneous without containment A355388.
A075900 counts compositions of each part of a partition.
A304961 counts compositions of each part of a strict partition.
A307068 counts strict compositions of each part of a composition.
A336127 counts compositions of each part of a strict composition.

Programs

  • Mathematica
    Table[Sum[Length[Union[Subsets[y]]],{y,Join@@Permutations/@IntegerPartitions[n]}],{n,0,6}]
  • PARI
    lista(n)=my(f=sum(k=1,n,(x^k+x*O(x^n))/(1-x/(1-x)+x^k)));Vec((1-x)/((1-2*x)*(1-f))) \\ Christian Sievers, May 06 2025

Formula

G.f.: (1-x)/((1-2*x)*(1-f)) where f = Sum_{k>=1} x^k/(1-x/(1-x)+x^k) is the generating function for A331330. - Christian Sievers, May 06 2025

Extensions

a(16) and beyond from Christian Sievers, May 06 2025

A370733 a(n) = 5^(2*n) * [x^n] Product_{k>=1} 1/(1 - 2*x^k)^(1/5).

Original entry on oeis.org

1, 10, 550, 19750, 921250, 32011250, 1563143750, 58080093750, 2719958906250, 113913469531250, 5214823539843750, 228024893230468750, 10704801509316406250, 482674223446582031250, 22664252188144042968750, 1053427002068999511718750, 49776941230938518066406250
Offset: 0

Views

Author

Vaclav Kotesovec, Feb 28 2024

Keywords

Crossrefs

Cf. A070933 (m=1), A370713 (m=2), A370715 (m=3), A370732 (m=4).

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[Product[1/(1-2*x^k), {k, 1, nmax}]^(1/5), {x, 0, nmax}], x] * 25^Range[0, nmax]
    nmax = 20; CoefficientList[Series[Product[1/(1-2*(25*x)^k), {k, 1, nmax}]^(1/5), {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} 1/(1 - 2*(25*x)^k)^(1/5).
a(n) ~ 50^n / (Gamma(1/5) * QPochhammer(1/2)^(1/5) * n^(4/5)).

A370749 a(n) = 2^n * [x^n] Product_{k>=1} ((1 + 2*x^k)/(1 - 2*x^k))^(1/4).

Original entry on oeis.org

1, 2, 6, 28, 70, 300, 892, 3544, 9990, 43340, 127988, 546120, 1651356, 7227896, 22414008, 99344944, 312879302, 1396285452, 4486205892, 20057934312, 65293087284, 292353604136, 963327294536, 4308913730256, 14340603113372, 64059675491512, 215075154021384, 958968160741328
Offset: 0

Views

Author

Vaclav Kotesovec, Feb 29 2024

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 30; CoefficientList[Series[Product[(1 + 2*x^k)/(1 - 2*x^k), {k, 1, nmax}]^(1/4), {x, 0, nmax}], x] * 2^Range[0, nmax]
    nmax = 30; CoefficientList[Series[Product[(1 + 2*(2*x)^k)/(1 - 2*(2*x)^k), {k, 1, nmax}]^(1/4), {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} ((1 + 2*(2*x)^k)/(1 - 2*(2*x)^k))^(1/4).
a(n) ~ QPochhammer(-1, 1/2)^(1/4) * 4^n / (Gamma(1/4) * QPochhammer(1/2)^(1/4) * n^(3/4)).

A370750 a(n) = 9^n * [x^n] Product_{k>=1} ((1 + 2*x^k)/(1 - 2*x^k))^(1/3).

Original entry on oeis.org

1, 12, 180, 3852, 50436, 947052, 14087844, 245858652, 3531115620, 64019229660, 950199749748, 16959724619004, 256888616329044, 4642974930688812, 71716402072904724, 1308491345357401068, 20501966472318764388, 376230182366985289164, 5987314157007778195716, 110286515004790197907836
Offset: 0

Views

Author

Vaclav Kotesovec, Feb 29 2024

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[Product[(1 + 2*x^k)/(1 - 2*x^k), {k, 1, nmax}]^(1/3), {x, 0, nmax}], x] * 9^Range[0, nmax]
    nmax = 20; CoefficientList[Series[Product[(1 + 2*(9*x)^k)/(1 - 2*(9*x)^k), {k, 1, nmax}]^(1/3), {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} ((1 + 2*(9*x)^k)/(1 - 2*(9*x)^k))^(1/3).
a(n) ~ QPochhammer(-1, 1/2)^(1/3) * 18^n / (Gamma(1/3) * QPochhammer(1/2)^(1/3) * n^(2/3)).

A255180 Number of partitions of n in which two summands (of each size) are designated.

Original entry on oeis.org

1, 0, 1, 3, 7, 10, 20, 24, 45, 61, 103, 140, 246, 325, 517, 728, 1086, 1472, 2184, 2918, 4197, 5638, 7875, 10497, 14625, 19272, 26354, 34804, 46992, 61490, 82471, 107163, 142128, 184141, 241701, 311282, 406164, 519755, 672726, 858110, 1102872
Offset: 0

Views

Author

Geoffrey Critzer, Mar 19 2015

Keywords

Examples

			a(4)=7. In order to designate two summands of each size, the multiplicity of each summand must be at least two. For n=4 we consider only the partitions 2+2 and 1+1+1+1.  In the first case there is 1 way and in the second case there are 6 ways.  1 + 6 = 7.
		

Crossrefs

Cf. A077285, A070933 (where any number of summands of any size are designated).

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          b(n, i-1)+add(b(n-i*j, i-1)*binomial(j, 2), j=2..n/i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..50);  # Alois P. Heinz, Mar 19 2015
  • Mathematica
    nn = 40; CoefficientList[Series[Product[1 + x^(2 n)/(1 - x^n)^3, {n, 1, nn}], {x, 0, nn}], x]

Formula

G.f.: Product_{n>=1} 1 + x^(2*n)/(1 - x^n)^3.

A291583 Expansion of Product_{k>=1} 1/(1 - 2*x^(k^2)).

Original entry on oeis.org

1, 2, 4, 8, 18, 36, 72, 144, 292, 586, 1172, 2344, 4696, 9396, 18792, 37584, 75186, 150380, 300764, 601528, 1203092, 2406200, 4812408, 9624816, 19249704, 38499446, 76998908, 153997824, 307995792, 615991660, 1231983352, 2463966720, 4927933732, 9855867616
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 31 2017

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 30; CoefficientList[Series[Product[1/(1 - 2*x^(k^2)), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) = c * 2^n, where c = Product_{k>=2} 1/(1 - 2^(1-k^2)) = 1.1473740190706250791012378892728990358979800885299281286906257674366893358222...

A300582 Expansion of Product_{k>=1} 1 / (1 - 3*2^k*x^k).

Original entry on oeis.org

1, 6, 48, 312, 2064, 12768, 79680, 484224, 2947584, 17783808, 107268096, 644960256, 3877367808, 23282294784, 139790696448, 838984925184, 5035133042688, 30213857476608, 181298502303744, 1087829443608576, 6527166069080064, 39163476131708928, 234983177934864384
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 09 2018

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 25; CoefficientList[Series[Product[1/(1-3*2^k*x^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ c * 6^n, where c = 1/QPochhammer(1/3) = 1.7853123419985341903674862960137...
Previous Showing 31-40 of 45 results. Next