cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-45 of 45 results.

A346848 Number of conjugacy classes of the symplectic group Sp(2n, 2) over the field with 2 elements.

Original entry on oeis.org

1, 3, 11, 30, 81, 198, 477, 1089, 2451, 5358, 11567, 24537, 51577, 107205, 221378, 453900, 926395, 1882152, 3812232, 7699191, 15518112, 31220991, 62733296, 125911851, 252516626, 506082933, 1013780968, 2029989807, 4063678159, 8132877129, 16274093175
Offset: 0

Views

Author

Jan Kristian Haugland, Aug 06 2021

Keywords

Comments

Sp(2n, 2) is isomorphic to the orthogonal group O(2n+1, 2) over the field with 2 elements, and is a simple and complete group for n>=3.

Examples

			a(2)=11, and Sp(4, 2) is isomorphic to the symmetric group S_6 which has 11 conjugacy classes.
		

Crossrefs

Discrete convolution of A070933 and A098613. A003923 gives the order of the group.

A352402 Expansion of Product_{k>=1} 1 / (1 + 2^(k-1)*x^k).

Original entry on oeis.org

1, -1, -1, -3, -1, -7, -1, -15, 31, -63, 159, -95, 671, -287, 3231, -2975, 15519, -7839, 44191, -34975, 224415, -291999, 863391, -990367, 2927775, -4902047, 12561567, -27225247, 56470687, -102640799, 152153247, -422620319, 877243551, -2278272159, 3357125791
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 08 2022

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 34; CoefficientList[Series[Product[1/(1 + 2^(k - 1) x^k), {k, 1, nmax}], {x, 0, nmax}], x]
    Table[Sum[(-1)^k Length[IntegerPartitions[n, {k}]] 2^(n - k), {k, 0, n}], {n, 0, 34}]

Formula

a(n) = Sum_{k=0..n} (-1)^k * p(n,k) * 2^(n-k), where p(n,k) is the number of partitions of n into k parts.

A355390 Number of ordered pairs of distinct integer partitions of n.

Original entry on oeis.org

0, 0, 2, 6, 20, 42, 110, 210, 462, 870, 1722, 3080, 5852, 10100, 18090, 30800, 53130, 87912, 147840, 239610, 392502, 626472, 1003002, 1573770, 2479050, 3831806, 5931660, 9057090, 13819806, 20834660, 31399212, 46806122, 69697452, 102870306, 151523790, 221488806
Offset: 0

Views

Author

Gus Wiseman, Jul 04 2022

Keywords

Examples

			The a(0) = 0 through a(3) = 6 pairs:
  .  .  (11)(2)  (21)(3)
        (2)(11)  (3)(21)
                 (111)(3)
                 (3)(111)
                 (111)(21)
                 (21)(111)
		

Crossrefs

Without distinctness we have A001255, unordered A086737.
The version for compositions is A020522, unordered A006516.
The unordered version is A355389.
A000041 counts partitions, strict A000009.
A001970 counts multiset partitions of partitions.
A063834 counts partitions of each part of a partition.

Programs

  • Mathematica
    Table[Length[Select[Tuples[IntegerPartitions[n],2],UnsameQ@@#&]],{n,0,15}]
  • PARI
    a(n) = 2*binomial(numbpart(n), 2); \\ Michel Marcus, Jul 05 2022

Formula

a(n) = 2*A355389(n) = 2*binomial(A000041(n), 2).

A371546 Expansion of e.g.f. Product_{k>=1} 1 / (1 - 2*x^k/k!).

Original entry on oeis.org

1, 2, 10, 62, 522, 5262, 64006, 897990, 14416618, 259650638, 5197438710, 114360488310, 2745242514966, 71378953200310, 1998718342001062, 59962112293963182, 1918813454880552298, 65239810516299767310, 2348641102002493520086, 89248414267689180772278, 3569939582019832830181222
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 27 2024

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[Product[1/(1 - 2 x^k/k!), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!

Formula

a(n) ~ c * 2^n * n!, where c = Product_{k>=2} 1/(1 - 2^(1-k)/k!) = 1.39938283723373672673056837661175942499559257652969647531100283042201554... - Vaclav Kotesovec, Mar 28 2024

A329274 Expansion of 1 / (1 + Sum_{k>=1} phi(k) * log(1 - 2 * x^k) / k), where phi = A000010.

Original entry on oeis.org

1, 2, 7, 24, 83, 286, 989, 3416, 11807, 40806, 141041, 487488, 1684971, 5823986, 20130299, 69579356, 240497727, 831269134, 2873243541, 9931234972, 34326861907, 118649239730, 410105717339, 1417511828340, 4899565424887, 16935125993974, 58535496103303, 202325291692972
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 11 2019

Keywords

Comments

Invert transform of A000031.

Crossrefs

Programs

  • Mathematica
    nmax = 27; CoefficientList[Series[1/(1 + Sum[EulerPhi[k] Log[1 - 2 x^k]/k, {k, 1, nmax}]), {x, 0, nmax}], x]
    a[0] = 1; a[n_] := a[n] = Sum[(1/k) DivisorSum[k, EulerPhi[#] 2^(k/#) &] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 27}]

Formula

a(0) = 1; a(n) = Sum_{k=1..n} A000031(k) * a(n-k).
Previous Showing 41-45 of 45 results.