cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A327282 Cardinalities of the minimal sets of base-n representations of the composite numbers.

Original entry on oeis.org

3, 4, 9, 10, 19, 18, 26, 28, 32, 32, 46, 43, 52, 54, 60, 60, 95, 77, 87, 90, 94, 97, 137, 117, 111, 115, 131, 123, 207, 147, 160, 163, 201, 169, 216, 173, 185, 195, 242, 205, 331, 229, 242, 252, 277, 261, 411, 294, 292, 290, 322, 299, 438, 331, 304, 331, 356, 339, 659, 375, 379, 404, 461, 412
Offset: 2

Views

Author

Hugo Pfoertner, Nov 29 2019

Keywords

Comments

Second column |M(S_b)| of Figure 4 on page 20 of the Bright, Devillers, Shallit article.

Examples

			a(10) = 32 because there are 32 elements in the minimal set of composite-strings in base 10, given in A071070.
		

Crossrefs

Extensions

a(31)-a(65) from Hugo Pfoertner using data from Raymond Devillers, Jan 12 2021

A347819 Minimal elements for the base-10 representations of the primes greater than 10.

Original entry on oeis.org

11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 227, 251, 257, 277, 281, 349, 409, 449, 499, 521, 557, 577, 587, 727, 757, 787, 821, 827, 857, 877, 881, 887, 991, 2087, 2221, 5051, 5081, 5501, 5581, 5801, 5851, 6469, 6949, 8501
Offset: 1

Views

Author

Eric Chen, Sep 16 2021

Keywords

Comments

Sequence is finite with 77 terms, the largest being 5*10^30 + 27 (which can be written 5(0_28)27, where 0_28 means the string of 28 0's). See text file for proof (this file also has proofs for bases 2, 3, 4, 5, 6, 8, 12).
Minimal elements for the base b representations of the primes > b for other bases b: (see the text file for 9 <= b <= 16) (all written in base b)
b=2: {11}
b=3: {12, 21, 111}
b=4: {11, 13, 23, 31, 221}
b=5: {12, 21, 23, 32, 34, 43, 104, 111, 131, 133, 313, 401, 414, 3101, 10103, 14444, 30301, 33001, 33331, 44441, 300031, 10^95 + 13}
b=6: {11, 15, 21, 25, 31, 35, 45, 51, 4401, 4441, 40041}
b=7: {14, 16, 23, 25, 32, 41, 43, 52, 56, 61, 65, 113, 115, 131, 133, 155, 212, 221, 304, 313, 335, 344, 346, 364, 445, 515, 533, 535, 544, 551, 553, 1022, 1051, 1112, 1202, 1211, 1222, 2111, 3031, 3055, 3334, 3503, 3505, 3545, 4504, 4555, 5011, 5455, 5545, 5554, 6034, 6634, 11111, 11201, 30011, 30101, 31001, 31111, 33001, 33311, 35555, 40054, 100121, 150001, 300053, 351101, 531101, 1100021, 33333301, 5100000001, 33333333333333331} (conjectured, not proven)
b=8: {13, 15, 21, 23, 27, 35, 37, 45, 51, 53, 57, 65, 73, 75, 107, 111, 117, 141, 147, 161, 177, 225, 255, 301, 343, 361, 401, 407, 417, 431, 433, 463, 467, 471, 631, 643, 661, 667, 701, 711, 717, 747, 767, 3331, 3411, 4043, 4443, 4611, 5205, 6007, 6101, 6441, 6477, 6707, 6777, 7461, 7641, 47777, 60171, 60411, 60741, 444641, 500025, 505525, 3344441, 4444477, 5500525, 5550525, 55555025, 444444441, 744444441, 77774444441, 7777777777771, 555555555555525, (10^220-1)/9*40 + 7}.
Equivalently: primes > 10 such that no proper substring (i.e., deleting any positive number of digits) is again a prime > 10. - M. F. Hasler, May 03 2022

Examples

			277 is in this sequence because none of 2, 7, 27, 77 is a prime > 10.
857 is in this sequence because none of 8, 5, 7, 85, 87, 57 is a prime > 10.
991 is in this sequence because none of 9, 1, 99, 91 is a prime > 10.
149 is not in this sequence because 19 is subsequence of 149 and 19 is a prime > 10.
389 is not in this sequence because 89 is subsequence of 389 and 89 is a prime > 10.
439 is not in this sequence because 43 is subsequence of 439 and 43 is a prime > 10.
		

Crossrefs

Cf. A071062 (primes > 10 are not required).
Minimal sets for other sets: A071070 (for composites), A071071 (powers of 2), A071072 (multiples of 4), A071073 (multiples of 3), A111055 (primes of the form 4*n+1), A111056 (primes of the form 4*n+3), A114835 (palindromic primes), A130448 (minimal set of squares).

Programs

  • PARI
    a(n, k, b)=v=[]; for(r=1, length(digits(n, b)), if(r+length(digits(k, 2))-length(digits(n, b))>0 && digits(k, 2)[r+length(digits(k, 2))-length(digits(n, b))]==1, v=concat(v, digits(n, b)[r]))); fromdigits(v, b)
    iss(n, b)=for(k=1, 2^length(digits(n, b))-2, if(ispseudoprime(a(n, k, b)) && a(n, k, b)>b, return(0))); 1
    is(n, b=10)=isprime(n) && n>b && iss(n, b) \\ Test whether n is a minimal element for the base b representations of the primes > b. Default value b = 10 for this sequence.
    select( {is_A347819(n,b=10)=for(L=2, #n=digits(n,b), forvec(d=vector(L, i, [1,#n]), n[d[1]]&& isprime(fromdigits(vecextract(n,d),b))&& return(L==#n), 2))}, [1..8888]) \\ Better select among primes([1,N]). - M. F. Hasler, May 03 2022

Extensions

Edited by M. F. Hasler, May 03 2022

A111057 Minimal set in the sense of A071062 of prime-strings in base 12 for primes of the form 4n+1.

Original entry on oeis.org

5, 13, 37, 73, 97, 109, 313, 337, 373, 409, 421, 577, 601, 661, 709, 1009, 1033, 1093, 1129, 1489, 1609, 1669, 3457, 7537, 12721, 13729, 17401, 17569, 19009, 19141, 20593, 20641, 165877, 208501, 221173, 225781, 226201, 226357, 228793, 246817, 246937, 248821, 1097113, 2695813, 2735269, 2736997, 2737129, 32555521, 388177921
Offset: 1

Views

Author

Walter Kehowski, Oct 06 2005

Keywords

Comments

Maple worksheet available upon request. Here is the minimal set of primes of the form 4n+1 in base 12, where X is ten and E is eleven. 5, 11, 31, 61, 81, 91, 221, 241, 271, 2X1, 2E1, 401, 421, 471, 4E1, 701, 721, 771, 7X1, X41, E21, E71, 2001, 4441, 7441, 7E41, X0X1, X201, E001, E0E1, EE01, EE41, 7EEE1, X07E1, X7EE1, XX7E1, XXXX1, XXEE1, E04X1, EXX01, EXXX1, EEEE1, 44XXX1, XX00E1, XEXXE1, XEEXE1, XEEEX1, XXX0001, XX000001. Note that the last prime in the set is the same as the last prime in the minimal set of all primes. See A110600. I am checking certain ranges past this last prime but flow-charting the possibilities leads me to believe I have found the full sequence. The minimal set of prime strings in base 12 for primes of the form 4n+3 is [3, 7, E] since every 4n+3 prime greater than 3 ends in either 7 or E.

Examples

			a(11)=421="2E1" since the pattern "*2*E*1*" does not occur in any previously found prime of the form 4n+1. Assuming all previous members of the list have been similarly recursively constructed, then "401" (577 in base 10) is the next prime in the list. The basic rule is: if no substring of p matches any previously found prime, add p to the list. The basic theorem of minimal sets says that this process will terminate, that is, the minimal set is always finite.
		

Crossrefs

A172982 Partial sums of minimal set of prime-strings in base 10 (A071062).

Original entry on oeis.org

2, 5, 10, 17, 28, 47, 88, 149, 238, 647, 1096, 1595, 2476, 3467, 9936, 16885, 25886, 34935, 44584, 54533, 115182, 781831, 1728500, 61728549, 127728598, 194328647
Offset: 1

Views

Author

Jonathan Vos Post, Feb 06 2010

Keywords

Comments

The subsequence of primes is: 2, 5, 47, 149, 647, 3467, of which only 2 and 5 are in the original sequence.

Examples

			a(26) = 194328647 = 2 + 3 + 5 + 7 + 11 + 19 + 41 + 61 + 89 + 409 + 449 + 499 + 881 + 991 + 6469 + 6949 + 9001 + 9049 + 9649 + 9949 + 60649 + 666649 + 946669 + 60000049 + 66000049 + 66600049.
		

Crossrefs

Previous Showing 11-14 of 14 results.