cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A071384 Radii of the circles around (0,0) that contain record numbers of lattice points, rounded up to the next integer.

Original entry on oeis.org

0, 1, 3, 5, 9, 19, 34, 65, 75, 167, 269, 372, 401, 896, 1444, 2002, 2435, 5445, 8779, 12175, 15591, 34862, 56213, 77953, 113501, 231769, 253794, 409231, 567501, 886464, 1687299, 1982193, 3196190, 4432317, 7146896, 13178226, 15980946
Offset: 1

Views

Author

Hugo Pfoertner, May 23 2002

Keywords

Comments

a(n)^2 = A071383(n) for a(n) = 1, 5, 65, ... .

Crossrefs

Formula

a(n) = ceiling ( A071383(n)^(1/2) ).

Extensions

Description clarified by Günter Rote, Sep 13 2023

A075880 Position of the circles around (0,0) that contain record numbers of lattice points in the list of all circles around (0,0) that pass through lattice points, ordered by increasing radius.

Original entry on oeis.org

0, 1, 4, 13, 30, 121, 362, 1232, 1584, 7121, 17548, 32649, 37603, 174926, 437750, 821432, 1198677, 5678338, 14335447, 27044791, 43735981, 209473053, 531787054, 1006745669, 2097411347, 8474384496, 10122355701
Offset: 1

Views

Author

Hugo Pfoertner, Oct 16 2002

Keywords

Comments

The first terms of this sequence were given by James Buddenhagen in a sci.math posting on May 05 2002 entitled "Circle with 3 lattice points"

Examples

			a(4)=13 because A001481(14) = A071383(4)=25.
		

Crossrefs

Formula

a(n) = k-1 for which A001481(k) = A071383(n).
lim n ->infinity a(n) = k_LR * exp(n) / n^(1/2), where k_LR is the Landau-Ramanujan constant 0.764223653... (A064533)

Extensions

Minor edits to adjust formula and example for changes to offset of related sequences by Ray Chandler, Jan 13 2012

A326312 Where the number of divisors d(k) reaches a new record for numbers k whose prime factors are of the form 3*j+2.

Original entry on oeis.org

2, 4, 8, 16, 20, 40, 80, 160, 320, 400, 440, 800, 880, 1600, 1760, 3520, 4400, 7040, 8800, 14960, 17600, 29920, 59840, 74800, 119680, 149600, 299200, 598400, 1196800, 1376320, 1720400, 2752640, 3440800, 6881600, 13763200, 27526400, 34408000, 49891600, 68816000
Offset: 1

Views

Author

Hugo Pfoertner, Sep 11 2019

Keywords

Crossrefs

Programs

  • Mathematica
    aQ[n_] := AllTrue[FactorInteger[n][[;; , 1]], Mod[#, 3] == 2 &]; s[n_] := DivisorSum[n, 1 &, aQ[#] &]; sm = 0; seq = {}; Do[s1 = s[n]; If[s1 > sm, sm = s1; AppendTo[seq, n]], {n, 2, 10^5}]; seq (* Amiram Eldar, Sep 12 2019 *)
  • PARI
    pkn(x,d,m)={my(fn=factor(x),nf=#fn[,1]);for(k=1,nf,if(fn[k,1]%d!=m,return(0))); numdiv(x)};
    divrecord=0;
    for(k=2,50000000,my(j=pkn(k,3,2));if(j>divrecord,divrecord=j;print1(k,", ")))

Extensions

More terms from Amiram Eldar, Sep 12 2019

A326313 Where the number of divisors d(k) reaches a new record for numbers k whose prime factors are of the form 4*j+3.

Original entry on oeis.org

3, 9, 21, 63, 189, 441, 567, 693, 2079, 4851, 6237, 13167, 39501, 92169, 118503, 276507, 829521, 908523, 2119887, 2725569, 6359661, 19078983, 28164213, 57236949, 84492639, 171710847, 197149491, 591448473, 1211061159, 1774345419, 3633183477, 5323036257, 6505933203
Offset: 1

Views

Author

Hugo Pfoertner, Sep 11 2019

Keywords

Comments

For references and links see A326312.

Crossrefs

Programs

  • Mathematica
    aQ[n_] := AllTrue[FactorInteger[n][[;; , 1]], Mod[#, 4] == 3 &]; s[n_] := DivisorSum[n, 1 &, aQ[#] &]; sm = 0; seq = {}; Do[s1 = s[n]; If[s1 > sm, sm = s1; AppendTo[seq, n]], {n, 2, 10^5}]; seq (* Amiram Eldar, Sep 12 2019 *)
  • PARI
    pkn(x,d,m)={my(fn=factor(x),nf=#fn[,1]);for(k=1,nf,if(fn[k,1]%d!=m,return(0)));numdiv(x)};
    divrecord=0;
    for(k=2,50000000,my(j=pkn(k,4,3));if(j>divrecord,divrecord=j;print1(k,", ")))

Extensions

More terms from Amiram Eldar, Sep 12 2019

A326314 Where the number of divisors d(k) reaches a new record for numbers k whose prime factors are of the form 6*j+5.

Original entry on oeis.org

5, 25, 55, 275, 935, 3025, 4675, 21505, 51425, 107525, 537625, 1182775, 2688125, 3118225, 15591125, 34300475, 77955625, 127847225, 583108075, 639236125, 1406319475, 3196180625, 6008819575, 23907431075, 30044097875, 66097015325, 150220489375, 318467437475, 1123649260525
Offset: 1

Views

Author

Hugo Pfoertner, Sep 11 2019

Keywords

Comments

For references and links see A326312.

Crossrefs

Programs

  • Mathematica
    aQ[n_] := AllTrue[FactorInteger[n][[;; , 1]], Mod[#, 6] == 5 &]; s[n_] := DivisorSum[n, 1 &, aQ[#] &]; sm = 0; seq = {}; Do[s1 = s[n]; If[s1 > sm, sm = s1; AppendTo[seq, n]], {n, 2, 10^5}]; seq (* Amiram Eldar, Sep 12 2019 *)
  • PARI
    pkn(x, d, m)={my(fn=factor(x), nf=#fn[, 1]); for(k=1, nf, if(fn[k, 1]%d!=m, return(0))); numdiv(x)};
    divrecord=0;
    for(k=2, 200000000, my(j=pkn(k, 6, 5)); if(j>divrecord, divrecord=j; print1(k, ", ")))

Extensions

More terms from Amiram Eldar, Sep 12 2019

A344470 Record values in A002654.

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 20, 24, 32, 36, 40, 48, 64, 72, 80, 96, 128, 144, 160, 192, 216, 256, 288, 320, 384, 432, 512, 576, 640, 768, 864, 960, 1024, 1152, 1280, 1536, 1728, 1920, 2048, 2304, 2560, 2880, 3072, 3456, 3840, 4096, 4608, 5120, 5760, 6144
Offset: 1

Views

Author

Jianing Song, May 20 2021

Keywords

Comments

Also numbers k such that A018782(m) > A018782(k) for all m > k.

Examples

			9 is a term because the circle with radius sqrt(4225) centered at the origin hits exactly 4*9 = 36 integer points, and any circle with radius < sqrt(4225) centered at the origin hits fewer than 36 points.
		

Crossrefs

Records of Sum_{d|n} kronecker(m, d): A344472 (m=-3), this sequence (m=-4), A279542 (m=-6).

Programs

  • PARI
    my(v=list(10^15), rec=0); for(n=1, #v, if(numdiv(v[n])>rec, rec=numdiv(v[n]); print1(rec, ", "))) \\ see program for A054994

Formula

a(n) = A071385(n+1)/4.
a(n) = A000005(A071383(n+1)) = A002654(A071383(n+1)).

A326311 Least numbers k such that A004018(k) is nondecreasing.

Original entry on oeis.org

0, 1, 2, 4, 5, 10, 13, 17, 20, 25, 50, 65, 85, 125, 130, 145, 170, 185, 205, 221, 250, 260, 265, 290, 305, 325, 425, 650, 725, 845, 850, 925, 1025, 1105, 1625, 1885, 2125, 2210, 2405, 2465, 2665, 3145, 3250, 3445, 3485, 3625, 3770, 3965, 4225, 5525
Offset: 1

Views

Author

Hugo Pfoertner, Sep 11 2019

Keywords

Comments

Least squared radius of a circle around a grid point of the square lattice such that the number of grid points on this circle is not smaller than the number of grid points on any circle around a grid point of the square lattice with smaller radius. a(1) = 0 by convention.

Crossrefs

Programs

  • Julia
    using Nemo
    function A326311List(len)
        R, x = PolynomialRing(ZZ, "x")
        e = theta_qexp(2, len, x)
        L = [coeff(e, j) for j in 0:len - 1]
        m = ZZ(0)
        [n - 1 for (n, l) in enumerate(L) if l == (m = max(m, l))]
    end
    A326311List(1000) |> println # Peter Luschny, Sep 12 2019
  • PARI
    r2=0;for(k=0,6000,my(a004018 = if( k<1, k==0, 4 * sumdiv( k, d, (d%4==1) - (d%4==3))));if(a004018>=r2,r2=a004018;print1(k,", ")))
    
Previous Showing 11-17 of 17 results.