A355466
Expansion of Sum_{k>=0} (k^k * x)^k/(1 - k^k * x)^(k+1).
Original entry on oeis.org
1, 2, 19, 19879, 4297094601, 298028721578591321, 10314430386430205371442173873, 256923580889667562995278943476559835493321, 6277101737079381674883855772624745947410338680458857322625
Offset: 0
-
my(N=10, x='x+O('x^N)); Vec(sum(k=0, N, (k^k*x)^k/(1-k^k*x)^(k+1)))
-
my(N=10, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, exp(k^k*x)*(k^k*x)^k/k!)))
-
a(n) = sum(k=0, n, k^(k*n)*binomial(n, k));
A360816
Expansion of Sum_{k>=0} (k*x)^(2*k) / (1 - k*x)^(k+1).
Original entry on oeis.org
1, 0, 1, 2, 19, 100, 1118, 10034, 134993, 1715140, 27589661, 449763360, 8522965956, 168431719308, 3698624353289, 85523954588806, 2142927489388319, 56618555339223572, 1596938935380604858, 47399670488829289678, 1487559109670284821841
Offset: 0
-
Join[{1}, Table[Sum[k^n * Binomial[n-k,k], {k,0,n/2}], {n,1,20}]] (* Vaclav Kotesovec, Aug 04 2025 *)
-
my(N=30, x='x+O('x^N)); Vec(sum(k=0, N, (k*x)^(2*k)/(1-k*x)^(k+1)))
-
a(n) = sum(k=0, n\2, k^n*binomial(n-k, k));
A360817
Expansion of Sum_{k>=0} (k*x)^(3*k) / (1 - k*x)^(k+1).
Original entry on oeis.org
1, 0, 0, 1, 2, 3, 68, 389, 1542, 24810, 251564, 1814487, 27520734, 391640548, 4295115396, 69305652406, 1221344986380, 18207710383335, 329699350020676, 6759819628538561, 126950556666301050, 2624697847966227077, 60825028694289947940, 1365568620213461601924
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(sum(k=0, N, (k*x)^(3*k)/(1-k*x)^(k+1)))
-
a(n) = sum(k=0, n\3, k^n*binomial(n-2*k, k));
A360834
Expansion of Sum_{k>=0} (k * x)^k / (1 - (k * x)^2)^(k+1).
Original entry on oeis.org
1, 1, 4, 29, 304, 4100, 67520, 1314167, 29520128, 751658635, 21393444864, 673046604600, 23192501108736, 868730852002205, 35145114836811776, 1527192185786650417, 70941146068492943360, 3508043437942077557884, 183989995827118805352448
Offset: 0
-
my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, (k*x)^k/(1-(k*x)^2)^(k+1)))
-
a(n) = sum(k=0, n\2, (n-2*k)^n*binomial(n-k, k));
A360835
Expansion of Sum_{k>=0} (k * x)^k / (1 - (k * x)^3)^(k+1).
Original entry on oeis.org
1, 1, 4, 27, 258, 3221, 49572, 905466, 19122502, 458161191, 12275530636, 363646493044, 11801356347294, 416365459777150, 15867258718677348, 649548679156603983, 28426564854590132236, 1324406974148881529057, 65448443631801436742052
Offset: 0
-
my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, (k*x)^k/(1-(k*x)^3)^(k+1)))
-
a(n) = sum(k=0, n\3, (n-3*k)^n*binomial(n-2*k, k));
A362699
Expansion of e.g.f. 1/(1 + LambertW(-x * exp(x^3))).
Original entry on oeis.org
1, 1, 4, 27, 280, 3605, 56376, 1041103, 22188496, 535856553, 14460919120, 431287416131, 14087063106216, 500112706900573, 19174548699128200, 789598137339356535, 34757031591555021856, 1628640121039415039057, 80938770039259919191584
Offset: 0
A362700
Expansion of e.g.f. 1/(1 + LambertW(-x * exp(x^2/2))).
Original entry on oeis.org
1, 1, 4, 30, 304, 3950, 62736, 1177288, 25489024, 625404060, 17149867840, 519779815016, 17253698140416, 622521514670536, 24257636227003648, 1015256151136695840, 45421939756667293696, 2163253599528596482832, 109270502354027312243712
Offset: 0
A362703
Expansion of e.g.f. 1/(1 + LambertW(-x^3 * exp(x))).
Original entry on oeis.org
1, 0, 0, 6, 24, 60, 1560, 20370, 161616, 2601144, 53827920, 829605150, 14894289960, 360575394036, 8234733389064, 188800085076330, 5145737430116640, 148419618327231600, 4278452209330445856, 134018446273097264694, 4529883358179857555640
Offset: 0
A362705
Expansion of e.g.f. 1/(1 + LambertW(-x^3/6 * exp(x))).
Original entry on oeis.org
1, 0, 0, 1, 4, 10, 60, 595, 4536, 34524, 361320, 4333725, 51214460, 651628406, 9448719644, 146868322055, 2376666773040, 41077757951000, 762599081332176, 14918668387075449, 305774990501285940, 6602482711971622210, 149921553418087172260, 3557552268845721893131
Offset: 0
A216858
Number of connected functions from {1,2,...,n} into a subset of {1,2,...,n} summed over all subsets.
Original entry on oeis.org
0, 1, 5, 38, 422, 6184, 112632, 2453296, 62202800, 1799623296, 58507176320, 2111633645824, 83777729991936, 3624054557443072, 169759643117603840, 8560585769442662400, 462387289560368764928, 26633435981686107701248, 1629609677806398679646208, 105555926477075661655441408, 7215930505311133152120995840
Offset: 0
-
nn=20; a=-ProductLog[-x Exp[x] ]; Range[0,nn]! CoefficientList[Series[Log[1/(1-a)], {x,0,nn}], x]
-
x='x+O('x^30); concat([0], Vec(serlaplace(log(1/(1+ lambertw(-x*exp(x))))))) \\ G. C. Greubel, Nov 16 2017