A382487 The number of divisors of n whose largest prime factor is 3.
0, 0, 1, 0, 0, 2, 0, 0, 2, 0, 0, 3, 0, 0, 1, 0, 0, 4, 0, 0, 1, 0, 0, 4, 0, 0, 3, 0, 0, 2, 0, 0, 1, 0, 0, 6, 0, 0, 1, 0, 0, 2, 0, 0, 2, 0, 0, 5, 0, 0, 1, 0, 0, 6, 0, 0, 1, 0, 0, 3, 0, 0, 2, 0, 0, 2, 0, 0, 1, 0, 0, 8, 0, 0, 1, 0, 0, 2, 0, 0, 4, 0, 0, 3, 0, 0, 1
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
a[n_] := (IntegerExponent[n, 2] + 1) * IntegerExponent[n, 3]; Array[a, 100]
-
PARI
a(n) = (valuation(n, 2) + 1) * valuation(n, 3);
Formula
a(n) = 0 if and only if n is in A001651.
a(n) = 1 if and only if n is in A306771.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 1.
In general, the asymptotic mean of the number prime(k+1)-smooth divisors of n that are not prime(k)-smooth, for k >= 1, is (1/(prime(k+1)-1)) * Product_{i=1..k} (prime(i)/(prime(i)-1)).
Dirichlet g.f.: (zeta(s)/(1-1/2^s))*(1/(1-1/3^s) - 1).
Comments