cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A382487 The number of divisors of n whose largest prime factor is 3.

Original entry on oeis.org

0, 0, 1, 0, 0, 2, 0, 0, 2, 0, 0, 3, 0, 0, 1, 0, 0, 4, 0, 0, 1, 0, 0, 4, 0, 0, 3, 0, 0, 2, 0, 0, 1, 0, 0, 6, 0, 0, 1, 0, 0, 2, 0, 0, 2, 0, 0, 5, 0, 0, 1, 0, 0, 6, 0, 0, 1, 0, 0, 3, 0, 0, 2, 0, 0, 2, 0, 0, 1, 0, 0, 8, 0, 0, 1, 0, 0, 2, 0, 0, 4, 0, 0, 3, 0, 0, 1
Offset: 1

Views

Author

Amiram Eldar, Mar 29 2025

Keywords

Comments

The number of 3-smooth divisors of n that are not powers of 2.
The number of terms of A065119 that divide n.

Crossrefs

Programs

  • Mathematica
    a[n_] := (IntegerExponent[n, 2] + 1) * IntegerExponent[n, 3]; Array[a, 100]
  • PARI
    a(n) = (valuation(n, 2) + 1) * valuation(n, 3);

Formula

a(n) = A072078(n) - A001511(n).
a(n) = A001511(n) * A007949(n).
a(n) = 0 if and only if n is in A001651.
a(n) = 1 if and only if n is in A306771.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 1.
In general, the asymptotic mean of the number prime(k+1)-smooth divisors of n that are not prime(k)-smooth, for k >= 1, is (1/(prime(k+1)-1)) * Product_{i=1..k} (prime(i)/(prime(i)-1)).
Dirichlet g.f.: (zeta(s)/(1-1/2^s))*(1/(1-1/3^s) - 1).

A382492 a(n) is the least number that has exactly n 3-smooth divisors.

Original entry on oeis.org

1, 2, 4, 6, 16, 12, 64, 24, 36, 48, 1024, 72, 4096, 192, 144, 216, 65536, 288, 262144, 432, 576, 3072, 4194304, 864, 1296, 12288, 2304, 1728, 268435456, 2592, 1073741824, 3456, 9216, 196608, 5184, 6912, 68719476736, 786432, 36864, 10368, 1099511627776, 15552, 4398046511104
Offset: 1

Views

Author

Amiram Eldar, Mar 29 2025

Keywords

Comments

The record values occur at A046022.
All the terms are in A003586 and A025487.

Crossrefs

Programs

  • Mathematica
    a[n_] := Min[Table[2^(d-1)*3^(n/d-1), {d, Divisors[n]}]]; Array[a, 60]
  • PARI
    a(n) = vecmin(apply(d -> 2^(d-1)*3^(n/d-1), divisors(n)));

Formula

a(n) = Min_{d|n} (2^(d-1)*3^(n/d-1)).
a(n) = 2^A382493(n) * 3^(n/(A382493(n)+1)-1).
a(p) = 2^(p-1) for prime p.
a(n) = A005179(n) if n is in A037143.

A088244 Number of 3-smooth divisors of n!.

Original entry on oeis.org

1, 1, 2, 4, 8, 8, 15, 15, 24, 40, 45, 45, 66, 66, 72, 84, 112, 112, 153, 153, 171, 190, 200, 200, 253, 253, 264, 336, 364, 364, 405, 405, 480, 512, 528, 528, 630, 630, 648, 684, 741, 741, 800, 800, 840, 924, 946, 946, 1081, 1081, 1104, 1152, 1200, 1200
Offset: 0

Views

Author

Reinhard Zumkeller, Jan 23 2004

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := ((1 + IntegerExponent[n!, 2])*(1 + IntegerExponent[n!, 3])); Array[a, 100, 0] (* Amiram Eldar, Aug 30 2019 *)

Formula

a(n) = A072078(A000142(n)).
a(n) = a(n-1) iff gcd(n,6) = 1.
a(n) = (A011371(n)+1)*(A054861(n)+1).

A382490 The number of infinitary 3-smooth divisors of n.

Original entry on oeis.org

1, 2, 2, 2, 1, 4, 1, 4, 2, 2, 1, 4, 1, 2, 2, 2, 1, 4, 1, 2, 2, 2, 1, 8, 1, 2, 4, 2, 1, 4, 1, 4, 2, 2, 1, 4, 1, 2, 2, 4, 1, 4, 1, 2, 2, 2, 1, 4, 1, 2, 2, 2, 1, 8, 1, 4, 2, 2, 1, 4, 1, 2, 2, 4, 1, 4, 1, 2, 2, 2, 1, 8, 1, 2, 2, 2, 1, 4, 1, 2, 2, 2, 1, 4, 1, 2, 2
Offset: 1

Views

Author

Amiram Eldar, Mar 29 2025

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := 2^(DigitCount[IntegerExponent[n, 2], 2, 1] + DigitCount[IntegerExponent[n, 3], 2, 1]); Array[a, 100]
  • PARI
    a(n) = 1 << (hammingweight(valuation(n, 2)) + hammingweight(valuation(n, 3)));

Formula

Multiplicative with a(p^e) = 2^A000120(e) of p <= 3, and 1 otherwise.
a(n) = 2^(A000120(A007814(n)) + A000120(A007949(n))).
a(n) = A037445(A065331(n)).
a(n) = A037445(n) if and only if n is 3-smooth (A003586).
a(n) = A382488(n) if and only if n is an exponentially 2^n number (A138302).
a(n) = A072078(n) if and only if n is a product of a 5-rough number (A007310) and a 3-smooth number whose number of divisors is a power of 2 (i.e., in both A003586 and A036537).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = (1/3) * Product_{k>=0} (1+1/2^(2^k-1))*(1+2/3^(2^k)) = 2.36739050930467832207... .

A382491 a(n) is the numerator of the asymptotic density of the numbers whose number of 3-smooth divisors is n.

Original entry on oeis.org

1, 5, 13, 71, 97, 1355, 793, 19163, 53473, 292355, 60073, 13102907, 535537, 78584915, 790859641, 3523099499, 43112257, 99646519235, 387682633, 2764285630427, 7604811750289, 7337148996275, 31385253913, 2226944658077771, 3656440886376673, 2341258386360995, 80539587570991081
Offset: 1

Views

Author

Amiram Eldar, Mar 29 2025

Keywords

Comments

The denominator that corresponds to a(n) is 3*6^(n-1) = A169604(n-1) = A081341(n).

Examples

			Fractions begin with 1/3, 5/18, 13/108, 71/648, 97/3888, 1355/23328, 793/139968, 19163/839808, 53473/5038848, 292355/30233088, 60073/181398528, 13102907/1088391168, ...
a(1) = 1 since a(1)/A081341(1) = 1/3 is the asymptotic density of the numbers with a single 3-smooth divisor, 1, i.e., the numbers that are congruent to 1 or 5 mod 6 (A007310).
a(2) = 5 since a(2)/A081341(2) = 5/18 is the asymptotic density of the numbers with exactly two 3-smooth divisors, either 1 and 2 or 1 and 3, i.e., A171126.
		

Crossrefs

Cf. A007310, A072078, A081341 (denominators), A169604, A171126.

Programs

  • Mathematica
    a[n_] := DivisorSum[n, 2^(n-#) * 3^(n-n/#) &]; Array[a, 30]
  • PARI
    a(n) = sumdiv(n, d, 2^(n-d)*3^(n-n/d));

Formula

a(n) = Sum_{d|n} 2^(n-d) * 3^(n-n/d).
a(p) = 2^(p-1) + 3^(p-1).
Let f(n) = a(n)/A081341(n). Then:
f(n) = (1/3) * Sum_{d|n} (1/2)^(d-1) * (1/3)^(n/d-1).
Sum_{n>=1} f(n) = 1.
Sum_{n>=1} n * f(n) = 3 (the asymptotic mean of A072078).
Sum_{n>=1} n^2 * f(n) = 18, and therefore, the asymptotic variance of A072078 is 18 - 3^2 = 9, and its asymptotic standard deviation is 3.

A076302 Triangle T(n,k) = number of k-smooth divisors of n, read by rows.

Original entry on oeis.org

1, 1, 2, 1, 1, 2, 1, 3, 3, 3, 1, 1, 1, 1, 2, 1, 2, 4, 4, 4, 4, 1, 1, 1, 1, 1, 1, 2, 1, 4, 4, 4, 4, 4, 4, 4, 1, 1, 3, 3, 3, 3, 3, 3, 3, 1, 2, 2, 2, 4, 4, 4, 4, 4, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 3, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 2, 4, 4, 4, 4, 4, 4, 4, 4
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 14 2003

Keywords

Examples

			Triangle begins:
                   1
                 1   2
               1   1   2
             1   3   3   3
           1   1   1   1   2
         1   2   4   4   4   4
       1   1   1   1   1   1   2
     1   4   4   4   4   4   4   4
   1   1   3   3   3   3   3   3   3
		

Crossrefs

Programs

  • Mathematica
    T[n_, k_] := Times@@(IntegerExponent[n, #]+1& /@ Select[Range[2, k], PrimeQ]);
    Table[T[n, k], {n, 1, 14}, {k, 1, n}] // Flatten (* Jean-François Alcover, Sep 15 2021 *)

Formula

T(n,n) = A000005(n);
T(n,2) = A001511(n) for n>1.
T(n,3) = A072078(n) for n>2.
T(n,5) = A355583(n) for n>4.
Limit_{m->oo} (1/m) * Sum_{n=k..m} T(n,k) = 1/Product_{p prime <= k} (1 - 1/p). - Amiram Eldar, Apr 17 2025
Previous Showing 11-16 of 16 results.