cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 34 results. Next

A290107 a(1) = 1; for n > 1, a(n) = product of distinct exponents in the prime factorization of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 4, 1, 2, 1, 2, 1, 1, 1, 3, 2, 1, 3, 2, 1, 1, 1, 5, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 4, 2, 2, 1, 2, 1, 3, 1, 3, 1, 1, 1, 2, 1, 1, 2, 6, 1, 1, 1, 2, 1, 1, 1, 6, 1, 1, 2, 2, 1, 1, 1, 4, 4, 1, 1, 2, 1, 1, 1, 3, 1, 2, 1, 2, 1, 1, 1, 5, 1, 2, 2, 2, 1, 1, 1, 3, 1, 1, 1, 6, 1, 1, 1, 4, 1, 1, 1, 2, 2, 1, 1, 3
Offset: 1

Views

Author

Antti Karttunen, Aug 13 2017

Keywords

Examples

			For n = 36 = 2^2 * 3^2, the only distinct exponent that occurs is 2, thus a(36) = 2.
For n = 144 = 2^4 * 3^2, the distinct exponents are 2 and 4, thus a(144) = 2*4 = 8.
For n = 4500 = 2^2 * 3^2 * 5^3, the distinct exponents are 2 and 3, thus a(4500) = 2*3 = 6.
		

Crossrefs

Differs from A005361 for the first time at n=36.
Differs from A072411 for the first time at n=144, and also from A157754 for the second time (after the initial term).

Programs

  • Mathematica
    Table[If[n == 1, 1, Apply[Times, Union[FactorInteger[n][[All, -1]] ]]], {n, 120}] (* Michael De Vlieger, Aug 14 2017 *)
  • PARI
    A290107(n) = factorback(vecsort((factor(n)[, 2]), ,8));
    
  • Scheme
    (define (A290107 n) (A156061 (A181819 n)))

Formula

a(n) = A156061(A181819(n)).

A277326 LCM of nonzero coefficients of the n-th Stern polynomial.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 3, 1, 2, 1, 1, 1, 2, 2, 3, 2, 12, 3, 6, 1, 6, 2, 3, 1, 2, 1, 1, 1, 2, 2, 6, 2, 20, 3, 12, 2, 4, 12, 30, 3, 20, 6, 6, 1, 6, 6, 15, 2, 60, 3, 12, 1, 6, 2, 3, 1, 2, 1, 1, 1, 2, 2, 6, 2, 60, 6, 12, 2, 12, 20, 40, 3, 140, 12, 12, 2, 12, 4, 40, 12, 60, 30, 140, 3, 60, 20, 40, 6, 20, 6, 6, 1
Offset: 0

Views

Author

Antti Karttunen, Oct 13 2016

Keywords

Comments

a(n) = the least common multiple of nonzero terms on the n-th row of A125184.

Crossrefs

Differs from A277325 for the first time at n=13, where a(13) = 2, while A277325(13) = 4.
After n=0, differs from A277315 for the first time at n=21, where a(21) = 12, while A277315(21) = 4.

Programs

  • Scheme
    (define (A277326 n) (A072411 (A260443 n)))
    ;; A standalone implementation:
    (define (A277326 n) (reduce lcm 1 (filter positive? (A260443as_coeff_list n))))
    (definec (A260443as_coeff_list n) (cond ((zero? n) (list)) ((= 1 n) (list 1)) ((even? n) (cons 0 (A260443as_coeff_list (/ n 2)))) (else (add_two_lists (A260443as_coeff_list (/ (- n 1) 2)) (A260443as_coeff_list (/ (+ n 1) 2))))))
    (define (add_two_lists nums1 nums2) (let ((len1 (length nums1)) (len2 (length nums2))) (cond ((< len1 len2) (add_two_lists nums2 nums1)) (else (map + nums1 (append nums2 (make-list (- len1 len2) 0)))))))

Formula

a(n) = A072411(A260443(n)).
a(2n) = a(n).
a(n) <= A277325(n).

A284569 a(n) = LCM of the lengths of runs of 1-bits in binary representation of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 1, 2, 2, 2, 3, 4, 1, 1, 1, 2, 1, 1, 2, 3, 2, 2, 2, 2, 3, 3, 4, 5, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 1, 2, 2, 2, 3, 4, 2, 2, 2, 2, 2, 2, 2, 6, 3, 3, 3, 6, 4, 4, 5, 6, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 1, 2, 2, 2, 3, 4, 1, 1, 1, 2, 1, 1, 2, 3, 2, 2, 2, 2, 3, 3, 4, 5, 2, 2, 2, 2, 2, 2, 2, 6, 2, 2, 2, 2, 2, 2, 6, 4, 3, 3, 3, 6, 3, 3, 6, 3, 4
Offset: 0

Views

Author

Antti Karttunen, Apr 14 2017

Keywords

Examples

			For n = 27, in binary A007088(27) = "11011", the lengths of runs of 1-bits are [2,2], thus a(27) = lcm(2,2) = 2.
For n = 55, in binary A007088(55) = "110111", the lengths of runs of 1-bits are [2,3], thus a(55) = lcm(2,3) = 6.
		

Crossrefs

Cf. A003714 (positions of ones).
Differs from A227349 for the first time at n=27, where a(27)=2, while A227349(27)= 4.
Differs from A038374 for the first time at n=55, where a(55) = 6, while A038374(55) = 3.

Programs

  • Scheme
    (define (A284569 n) (apply lcm (bisect (reverse (binexp->runcount1list n)) (- 1 (modulo n 2))))) ;; For bisect and binexp->runcount1list, see the Program section of A227349.
    (define (A284569 n) (A072411 (A005940 (+ 1 n))))

Formula

a(n) = A072411(A005940(1+n)).
a(n) = A227349(n) / A284562(n).

A072414 Non-Achilles numbers for which LCM of the exponents in the prime factorization of n is not equal to the maximum of the same exponents.

Original entry on oeis.org

360, 504, 540, 600, 756, 792, 936, 1176, 1188, 1224, 1350, 1368, 1400, 1404, 1440, 1500, 1656, 1836, 1960, 2016, 2052, 2088, 2160, 2200, 2232, 2250, 2400, 2484, 2520, 2600, 2646, 2664, 2904, 2952, 3024, 3096, 3132, 3168, 3240, 3348, 3384, 3400, 3500
Offset: 1

Views

Author

Labos Elemer, Jun 17 2002

Keywords

Comments

Most members of this sequence fail to be Achilles numbers because they have at least one prime factor with multiplicity 1. There are also numbers in the sequence that fail to be Achilles numbers because they are perfect powers: these are precisely the proper powers of members of A072412, so the smallest such is 5184 = 2^6*3^4 = 72^2. - Franklin T. Adams-Watters, Oct 09 2006

Examples

			m = 504 = 2*2*2*3*3*7: exponent-set = E = {3,2,1}, max(E) = 3 < lcm(E) = 6, gcd(E) = min(E) = 1.
		

Crossrefs

Programs

  • Mathematica
    Select[Range@ 3500, And[LCM @@ # != Max@ #, GCD @@ # == Min@ # == 1] &[FactorInteger[#][[All, -1]] ] &] (* Michael De Vlieger, Jul 18 2017 *)
  • PARI
    is(n)=my(f=factor(n)[,2]); n>9 && lcm(f)!=vecmax(f) && (#f==1 || vecmin(f)<2) \\ Charles R Greathouse IV, Oct 16 2015

Formula

A051903(a(n)) is not equal A072411(a(n)) but the numbers are not in A052486.

A328582 Least common multiple of nonzero digits in primorial base expansion of n.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 6, 6, 4, 4, 4, 4, 4, 4, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 6, 6, 4, 4, 4, 4, 4, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 6, 6, 6, 6, 6, 6, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 6, 6, 3, 3, 3, 3, 6, 6, 6, 6, 6, 6
Offset: 0

Views

Author

Antti Karttunen, Oct 21 2019

Keywords

Comments

a(0) = 1 as an empty product.

Crossrefs

Cf. A276156 (positions of 1's).

Programs

  • PARI
    A328582(n) = { my(m=1, p=2); while(n, if(n%p, m = lcm(m,n%p)); n = n\p; p = nextprime(1+p)); (m); };

Formula

a(n) = A072411(A276086(n)).

A329378 Least common multiple of exponents of prime factors of A108951(n), where A108951 is fully multiplicative with a(prime(i)) = prime(i)# = Product_{i=1..i} A000040(i).

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 3, 1, 2, 2, 4, 1, 6, 1, 3, 2, 2, 1, 4, 2, 2, 3, 3, 1, 6, 1, 5, 2, 2, 2, 4, 1, 2, 2, 4, 1, 6, 1, 3, 3, 2, 1, 5, 2, 6, 2, 3, 1, 12, 2, 4, 2, 2, 1, 4, 1, 2, 3, 6, 2, 6, 1, 3, 2, 6, 1, 10, 1, 2, 6, 3, 2, 6, 1, 5, 4, 2, 1, 4, 2, 2, 2, 4, 1, 12, 2, 3, 2, 2, 2, 6, 1, 6, 3, 4, 1, 6, 1, 4, 6
Offset: 1

Views

Author

Antti Karttunen, Nov 17 2019

Keywords

Crossrefs

Differs from related A329617 for the first time at n=36.

Programs

Formula

a(n) = A072411(A108951(n)) = A072411(A329600(n)).
a(n) <= A329617(n) <= A329382(n) <= A329605(n).
a(A019565(n)) = A284002(n).

A072413 Numbers k such that the LCM of exponents in the prime factorization of k does not equal the product of the exponents.

Original entry on oeis.org

36, 100, 144, 180, 196, 216, 225, 252, 300, 324, 396, 400, 441, 450, 468, 484, 576, 588, 612, 676, 684, 700, 720, 784, 828, 882, 900, 980, 1000, 1008, 1044, 1080, 1089, 1100, 1116, 1156, 1200, 1225, 1260, 1296, 1300, 1332, 1444, 1452, 1476, 1512, 1521
Offset: 1

Views

Author

Labos Elemer, Jun 17 2002

Keywords

Comments

The numbers of terms not exceeding 10^k, for k = 2, 3, ..., are 2, 29, 348, 3548, 35761, 358258, 3583892, 35843109, 358440763, ... . Apparently, the asymptotic density of this sequence exists and equals 0.03584... . - Amiram Eldar, Sep 09 2022

Examples

			k = 36 = 2*2*3*3; exponent set = {2,2}; LCM = 2, product = 4.
		

Crossrefs

Programs

  • Mathematica
    Select[Range@ 1600, LCM @@ # != Times @@ # &@ Map[Last, FactorInteger@ #] &] (* Michael De Vlieger, May 15 2016 *)
  • PARI
    is(n)=my(f=factor(n)[,2]); n>9 && lcm(f)!=factorback(f) \\ Charles R Greathouse IV, Jan 14 2017

Formula

A005361(a(n)) != A072411(a(n)).

A157754 a(1) = 0, a(n) = lcm(A051904(n), A051903(n)) for n >= 2.

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 4, 1, 2, 1, 2, 1, 1, 1, 3, 2, 1, 3, 2, 1, 1, 1, 5, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 4, 2, 2, 1, 2, 1, 3, 1, 3, 1, 1, 1, 2, 1, 1, 2, 6, 1, 1, 1, 2, 1, 1, 1, 6, 1, 1, 2, 2, 1, 1, 1, 4, 4, 1, 1, 2, 1, 1, 1, 3, 1, 2, 1, 2, 1, 1, 1, 5, 1, 2, 2, 2
Offset: 1

Views

Author

Jaroslav Krizek, Mar 05 2009

Keywords

Comments

a(n) for n >= 2 equals LCM of minimum and maximum exponents in the prime factorization of n.
a(n) for n >= 2 deviates from A072411, first different term is a(360), a(360) = 3, A072411(360) = 6.

Examples

			For n = 12 = 2^2 * 3^1 we have a(12) = lcm(2,1) = 2.
For n = 144 = 2^4 * 3^2 we have a(144) = lcm(4,2) = 4.
		

Crossrefs

Programs

  • Mathematica
    Table[LCM @@ {Min@ #, Max@ #} - Boole[n == 1] &@ FactorInteger[n][[All, -1]], {n, 100}] (* Michael De Vlieger, Jul 12 2017 *)
  • PARI
    a(n) = if(n == 1, 0, my(e = factor(n)[,2]); lcm(vecmin(e), vecmax(e))); \\ Amiram Eldar, Sep 11 2024

Formula

a(1) = 0, a(p) = 1, a(pq) = 1, a(pq...z) = 1, a(p^k) = k, for p = primes (A000040), pq = product of two distinct primes (A006881), pq...z = product of k (k > 2) distinct primes p, q, ..., z (A120944), p^k = prime powers (A000961(n) for n > 1) k = natural numbers (A000027).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = A033150. - Amiram Eldar, Sep 11 2024

A072412 Numbers k such that the LCM of exponents in the prime factorization of k does not equal the largest exponent.

Original entry on oeis.org

72, 108, 200, 288, 360, 392, 432, 500, 504, 540, 600, 648, 675, 756, 792, 800, 864, 936, 968, 972, 1125, 1152, 1176, 1188, 1224, 1323, 1350, 1352, 1368, 1372, 1400, 1404, 1440, 1500, 1568, 1656, 1800, 1836, 1944, 1960, 2000, 2016, 2052, 2088, 2160
Offset: 1

Views

Author

Labos Elemer, Jun 17 2002

Keywords

Comments

This sequence differs from the Achilles numbers (A052486).

Examples

			k = 360 = 2*2*2*3*3*5, exponent set = {3,2,1}; LCM=6, max=3.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[2000], LCM @@ (e = FactorInteger[#][[;; , 2]]) != Max[e] &] (* Amiram Eldar, Jul 30 2022 *)
  • PARI
    is(n)=my(f=factor(n)[,2]); n>9 && vecmax(f)!=lcm(f) \\ Charles R Greathouse IV, Oct 16 2015

Formula

A051903(a(n)) != A072411(a(n)).

A273058 Numbers having pairwise coprime exponents in their canonical prime factorization.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70
Offset: 1

Views

Author

Giuseppe Coppoletta, May 14 2016

Keywords

Comments

The complement of A072413.

Examples

			36 is not a term because 36 = 2^2 * 3^2 and gcd(2,2) = 2 > 1.
360 is a term because 360 = 2^3 * 3^2 * 5 and gcd(3,2) = gcd(2,1) = 1.
10800 is not a term because 10800 = 2^4 * 3^3 * 5^2 and gcd(4,2) > 1
		

Crossrefs

Programs

  • Mathematica
    Select[Range@ 120, LCM @@ # == Times @@ # &@ Map[Last, FactorInteger@ #] &] (* Michael De Vlieger, May 15 2016 *)
  • PARI
    is(n)=my(f=factor(n)[,2]); factorback(f)==lcm(f) \\ Charles R Greathouse IV, Jan 14 2017
  • Sage
    def d(n):
        v=factor(n)[:]; L=len(v); diff=prod(v[j][1] for j in range(L)) - lcm([v[j][1] for j in range(L)])
        return diff
    [k for k in (1..100) if d(k)==0]
    

Formula

A005361(a(n)) = A072411(a(n)).
Previous Showing 21-30 of 34 results. Next